Math Problem Statement

Solve the expression 125^(3/4) ÷ 25^(-1) × (-5)^3

Solution

The expression in the image is:

12534251×(5)3\frac{125^{\frac{3}{4}}}{25^{-1}} \times (-5)^3

Let's break down and solve each part of this expression.

Step 1: Evaluate 12534125^{\frac{3}{4}}

The fractional exponent 34\frac{3}{4} can be interpreted as: 12534=12534125^{\frac{3}{4}} = \sqrt[4]{125^3}

First, find the fourth root of 125: 125=5312514=534125 = 5^3 \Rightarrow 125^{\frac{1}{4}} = 5^{\frac{3}{4}}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponentiation
Fractional Exponents
Negative Exponents
Order of Operations

Formulas

a^(m/n) = (n-th root of a)^m
a^(-n) = 1 / a^n
PEMDAS/BODMAS for order of operations

Theorems

Properties of Exponents

Suitable Grade Level

Grades 10-12