Math Problem Statement

Evaluate the expression: ∫(from 0 to 1/2)(8x - 2x^2) dx - ∫(from 4 to 1/2)(8x - 2x^2) dx.

Solution

Let's analyze and solve the given problem step by step.

The expression is: 012(8x2x2)dx412(8x2x2)dx\int_0^{\frac{1}{2}} (8x - 2x^2) \, dx - \int_4^{\frac{1}{2}} (8x - 2x^2) \, dx

Step 1: Solve the first integral

For 012(8x2x2)dx\int_0^{\frac{1}{2}} (8x - 2x^2) \, dx:

  1. Split the integral: 012(8x2x2)dx=0128xdx0122x2dx\int_0^{\frac{1}{2}} (8x - 2x^2) \, dx = \int_0^{\frac{1}{2}} 8x \, dx - \int_0^{\frac{1}{2}} 2x^2 \, dx

  2. Solve each term:

    • For 0128xdx\int_0^{\frac{1}{2}} 8x \, dx: 8xdx=4x2+C\int 8x \, dx = 4x^2 + C Evaluate from 0 to 12\frac{1}{2}: 4(12)24(0)2=4(14)=14\left(\frac{1}{2}\right)^2 - 4(0)^2 = 4\left(\frac{1}{4}\right) = 1

    • For 0122x2dx\int_0^{\frac{1}{2}} 2x^2 \, dx: 2x2dx=23x3+C\int 2x^2 \, dx = \frac{2}{3}x^3 + C Evaluate from 0 to 12\frac{1}{2}: \

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integration
Polynomial Integration
Fundamental Theorem of Calculus

Formulas

∫ ax^n dx = (a/(n+1))x^(n+1) + C
Evaluation of definite integrals: ∫(from a to b) f(x) dx = F(b) - F(a)

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12 or early college level