Math Problem Statement

Evaluate the expression: ∫₀¹/₂ (8x - 2x²) dx - ∫₄¹/₂ (8x - 2x²) dx.

Solution

The image shows the expression:

012(8x2x2)dx412(8x2x2)dx\int_{0}^{\frac{1}{2}} (8x - 2x^2) \, dx - \int_{4}^{\frac{1}{2}} (8x - 2x^2) \, dx

We will evaluate both integrals step by step.


Step 1: Solve the indefinite integral

The function to integrate is 8x2x28x - 2x^2. Its integral is: (8x2x2)dx=4x22x33+C\int (8x - 2x^2) \, dx = 4x^2 - \frac{2x^3}{3} + C


Step 2: Evaluate the definite integrals

  1. First integral: [ \int_{0}^{\frac{1}{2}} (8x - 2x^2) , dx = \left[ 4x^2 - \frac{2x^3}{3} \right]_0^{\frac{1}{

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integrals
Polynomial Integration

Formulas

∫ (ax^n) dx = (ax^(n+1)) / (n+1) + C

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12 or Calculus I