Math Problem Statement

Evaluate the expression \( \int_0^{1/2} (8x - 2x^2) \, dx - \int_4^{1/2} (8x - 2x^2) \, dx \).

Solution

The problem involves evaluating definite integrals of the function 8x2x28x - 2x^2, followed by subtraction. Let's solve step by step.

The expression is: 01/2(8x2x2)dx41/2(8x2x2)dx\int_0^{1/2} (8x - 2x^2) \, dx - \int_4^{1/2} (8x - 2x^2) \, dx

Step 1: Evaluate the integral formula

The antiderivative of 8x2x28x - 2x^2 is: (8x2x2)dx=4x22x33+C\int (8x - 2x^2) \, dx = 4x^2 - \frac{2x^3}{3} + C

Step 2: Evaluate 01/2(8x2x2)dx\int_0^{1/2} (8x - 2x^2) \, dx

Using the limits 00 and 1/21/2, the integral becomes: [4x22x33]01/2\left[ 4x^2 - \frac{2x^3}{3} \right]_0^{1/2} At x=1/2x = 1/2: 4(12)22(12)33=4142183=1112=1212112=11124 \left(\frac{1}{2}\right)^2 - \frac{2\left(\frac{1}{2}\right)^3}{3} = 4 \cdot \frac{1}{4} - \frac{2 \cdot \frac{1}{8}}{3} = 1 - \frac{1}{12} = \frac{12}{12} - \frac{1}{12} = \frac{11}{12} At x=0x = 0: 4(0)22(0)33=04(0)^2 - \frac{2(0)^3}{3} = 0 Thus: 01/2(8x2x2)dx=1112\int_0^{1/2} (8x - 2x^2) \, dx = \frac{11}{12}

Step 3: Evaluate 41/2(8x2x2)dx\int_4^{1/2} (8x - 2x^2) \, dx

This integral is calculated as: [4x22x33]41/2\left[ 4x^2 - \frac{2x^3}{3} \right]_4^{1/2} At x=1/2x = 1/2: 4(12)22(12)33=1112(already computed).4 \left(\frac{1}{2}\right)^2 - \frac{2\left(\frac{1}{2}\right)^3}{3} = \frac{11}{12} \quad \text{(already computed)}. At x=4x = 4: 4(4)22(4)33=4162643=641283=19231283=6434(4)^2 - \frac{2(4)^3}{3} = 4 \cdot 16 - \frac{2 \cdot 64}{3} = 64 - \frac{128}{3} = \frac{192}{3} - \frac{128}{3} = \frac{64}{3} Thus: 41/2(8x2x2)dx=1112643=111225612=24512\int_4^{1/2} (8x - 2x^2) \, dx = \frac{11}{12} - \frac{64}{3} = \frac{11}{12} - \frac{256}{12} = -\frac{245}{12}

Step 4: Subtract the results

1112(24512)=1112+24512=25612=643\frac{11}{12} - \left(-\frac{245}{12}\right) = \frac{11}{12} + \frac{245}{12} = \frac{256}{12} = \frac{64}{3}

Final Answer:

643\boxed{\frac{64}{3}}

Let me know if you'd like more details or further clarification!


Relative Questions:

  1. How can definite integrals be used to calculate areas under curves?
  2. What are some common applications of definite integrals in physics?
  3. How do you handle integrals where the limits are reversed (e.g., baf(x)dx\int_b^a f(x) dx)?
  4. Why is the antiderivative important for solving definite integrals?
  5. What happens if the function being integrated contains discontinuities?

Tip: Always simplify constants carefully when working with fractions in definite integrals to avoid errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integrals
Polynomial Functions

Formulas

\( \int (8x - 2x^2) \, dx = 4x^2 - \frac{2x^3}{3} + C \)
Definite integral evaluation: \( \int_a^b f(x) \, dx = F(b) - F(a) \), where \( F'(x) = f(x) \)

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

College-level Calculus or Advanced High School