Math Problem Statement

Evaluate \( \int_{6}^{8} (x^2 - 2x - 3) \, dx \)

Solution

To evaluate the definite integral

68(x22x3)dx,\int_{6}^{8} (x^2 - 2x - 3) \, dx,

we'll follow these steps:

  1. Find the indefinite integral of x22x3x^2 - 2x - 3.
  2. Evaluate the antiderivative at the upper and lower limits of 8 and 6.
  3. Subtract the results to find the final answer.

Step 1: Integrate x22x3x^2 - 2x - 3

The antiderivative of each term is:

  • x2dx=x33\int x^2 \, dx = \frac{x^3}{3},
  • 2xdx=x2\int -2x \, dx = -x^2,
  • 3dx=3x\int -3 \, dx = -3x.

So, the indefinite integral is:

(x22x3)dx=x33x23x+C.\int (x^2 - 2x - 3) \, dx = \frac{x^3}{3} - x^2 - 3x + C.

Step 2: Apply the Limits

Now, we evaluate this at x=8x = 8 and x=6x = 6:

(8338238)(6336236).\left( \frac{8^3}{3} - 8^2 - 3 \cdot 8 \right) - \left( \frac{6^3}{3} - 6^2 - 3 \cdot 6 \right).

Calculating each part:

For x=8x = 8: 833=5123,82=64,38=24.\frac{8^3}{3} = \frac{512}{3}, \quad 8^2 = 64, \quad 3 \cdot 8 = 24. So, 51236424=5122643=2483.\frac{512}{3} - 64 - 24 = \frac{512 - 264}{3} = \frac{248}{3}.

For x=6x = 6: 633=2163=72,62=36,36=18.\frac{6^3}{3} = \frac{216}{3} = 72, \quad 6^2 = 36, \quad 3 \cdot 6 = 18. So, 723618=18.72 - 36 - 18 = 18.

Step 3: Final Calculation

Now subtract the values: 248318=248543=1943.\frac{248}{3} - 18 = \frac{248 - 54}{3} = \frac{194}{3}.

Final Answer:

68(x22x3)dx=1943.\int_{6}^{8} (x^2 - 2x - 3) \, dx = \frac{194}{3}.

Would you like more details or have any questions?

Related Questions:

  1. How would you evaluate an integral with different polynomial terms?
  2. How can integration be applied in real-world contexts?
  3. What is the importance of using limits in definite integrals?
  4. How would changing the limits affect the integral result?
  5. How does the Fundamental Theorem of Calculus apply to this problem?

Tip: Always verify each step when calculating definite integrals to avoid arithmetic errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integration
Polynomials

Formulas

Indefinite integral of x^2 - 2x - 3: \( \int (x^2 - 2x - 3) \, dx = \frac{x^3}{3} - x^2 - 3x + C \)
Fundamental Theorem of Calculus: \( \int_a^b f(x) \, dx = F(b) - F(a) \)

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12 or College Calculus