Math Problem Statement

Evaluate the definite integral \( \int_3^8 \frac{6x^2 + 8}{\sqrt{x}} \, dx \).

Solution

Let's evaluate the given definite integral:

386x2+8xdx\int_3^8 \frac{6x^2 + 8}{\sqrt{x}} \, dx

Step 1: Simplify the integrand

We can rewrite the integrand by splitting it into two terms and simplifying:

6x2+8x=6x2x12+8x12=6x32+8x12\frac{6x^2 + 8}{\sqrt{x}} = 6x^2 \cdot x^{-\frac{1}{2}} + 8 \cdot x^{-\frac{1}{2}} = 6x^{\frac{3}{2}} + 8x^{-\frac{1}{2}}

Thus, the integral becomes:

38(6x32+8x12)dx\int_3^8 \left( 6x^{\frac{3}{2}} + 8x^{-\frac{1}{2}} \right) dx

Step 2: Integrate term by term

We use the power rule for integration, xndx=xn+1n+1\int x^n \, dx = \frac{x^{n+1}}{n+1}, for each term:

  1. For 6x326x^{\frac{3}{2}}: 6x32dx=6x5252=125x52\int 6x^{\frac{3}{2}} \, dx = 6 \cdot \frac{x^{\frac{5}{2}}}{\frac{5}{2}} = \frac{12}{5} x^{\frac{5}{2}}

  2. For 8x128x^{-\frac{1}{2}}: 8x12dx=8x1212=16x12\int 8x^{-\frac{1}{2}} \, dx = 8 \cdot \frac{x^{\frac{1}{2}}}{\frac{1}{2}} = 16x^{\frac{1}{2}}

The indefinite integral is: 125x52+16x12\frac{12}{5} x^{\frac{5}{2}} + 16x^{\frac{1}{2}}

Step 3: Apply limits of integration

Now we evaluate the definite integral from x=3x = 3 to x=8x = 8. Substituting the limits into the antiderivative:

386x2+8xdx=[125x52+16x12]38\int_3^8 \frac{6x^2 + 8}{\sqrt{x}} \, dx = \left[ \frac{12}{5} x^{\frac{5}{2}} + 16x^{\frac{1}{2}} \right]_3^8

Evaluate at x=8x = 8:

  1. x52=852=(812)5=25=32x^{\frac{5}{2}} = 8^{\frac{5}{2}} = (8^{\frac{1}{2}})^5 = 2^5 = 32, so 125x52=12532=3845\frac{12}{5} x^{\frac{5}{2}} = \frac{12}{5} \cdot 32 = \frac{384}{5}.
  2. x12=812=2x^{\frac{1}{2}} = 8^{\frac{1}{2}} = 2, so 16x12=162=3216x^{\frac{1}{2}} = 16 \cdot 2 = 32.

Adding these: 12532+32=3845+1605=5445\frac{12}{5} \cdot 32 + 32 = \frac{384}{5} + \frac{160}{5} = \frac{544}{5}

Evaluate at x=3x = 3:

  1. x52=352=(312)5=(3)5x^{\frac{5}{2}} = 3^{\frac{5}{2}} = (3^{\frac{1}{2}})^5 = (\sqrt{3})^5, so 125x52=125(3)5\frac{12}{5} x^{\frac{5}{2}} = \frac{12}{5} \cdot (\sqrt{3})^5.
  2. x12=3x^{\frac{1}{2}} = \sqrt{3}, so 16x12=16316x^{\frac{1}{2}} = 16 \cdot \sqrt{3}.

Adding these: 125(3)5+163\frac{12}{5} \cdot (\sqrt{3})^5 + 16\sqrt{3}

Step 4: Final result

The definite integral is:

386x2+8xdx=5445(125(3)5+163)\int_3^8 \frac{6x^2 + 8}{\sqrt{x}} \, dx = \frac{544}{5} - \left( \frac{12}{5} \cdot (\sqrt{3})^5 + 16\sqrt{3} \right)

Would you like the numeric approximation for this result or additional details about any step?


Related Questions:

  1. What are the steps to convert a fractional exponent to radicals?
  2. How does the power rule of integration handle negative exponents?
  3. Why do we split the integrand before integration?
  4. How do definite integrals differ from indefinite integrals?
  5. What are practical applications of integrals with fractional exponents?

Tip:

For definite integrals, always simplify the integrand first to make integration straightforward.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integrals
Simplifying Integrands
Power Rule for Integration

Formulas

Power rule for integration: \( \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \) (for \( n \neq -1 \))

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

College-level Calculus