Math Problem Statement

Вычислите определенный интеграл

Вычислите определенный интеграл

Solution

The integral provided in the image is:

01(14x3)dx.\int_0^1 \left( 1 - 4 \sqrt[3]{x} \right) dx.

Let's solve it step by step.


Step 1: Break the integral into two parts

[ \int_0^1 \left( 1 - 4 \sqrt[3]{x} \right) dx = \int_0^1 1 , dx - \int_0^1 4 \sqrt[3]{x} , dx. ]

Step 2: Solve 011dx\int_0^1 1 \, dx

The integral of a constant 11 is: 011dx=x01=10=1.\int_0^1 1 \, dx = x \Big|_0^1 = 1 - 0 = 1.

Step 3: Solve 014x3dx\int_0^1 4 \sqrt[3]{x} \, dx

Rewrite x3\sqrt[3]{x} as x1/3x^{1/3}, so: 014x3dx=401x1/3dx.\int_0^1 4 \sqrt[3]{x} \, dx = 4 \int_0^1 x^{1/3} \, dx.

Use the power rule for integration: xndx=xn+1n+1+C,for n1.\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad \text{for } n \neq -1.

Here, n=13n = \frac{1}{3}, so: x1/3dx=x1/3+11/3+1=x4/34/3=34x4/3.\int x^{1/3} dx = \frac{x^{1/3 + 1}}{1/3 + 1} = \frac{x^{4/3}}{4/3} = \frac{3}{4} x^{4/3}.

Substitute the limits: 401x1/3dx=434x4/301=3[14/304/3]=3.4 \int_0^1 x^{1/3} dx = 4 \cdot \frac{3}{4} x^{4/3} \Big|_0^1 = 3 \cdot \left[ 1^{4/3} - 0^{4/3} \right] = 3.

Step 4: Combine the results

[ \int_0^1 \left( 1 - 4 \sqrt[3]{x} \right) dx = \int_0^1 1 , dx - \int_0^1 4 \sqrt[3]{x} , dx = 1 - 3 = -2. ]


Final Answer:

01(14x3)dx=2.\int_0^1 \left( 1 - 4 \sqrt[3]{x} \right) dx = -2.

Would you like a detailed breakdown of any step?


Related Questions:

  1. How do we handle improper integrals when the limits are infinite?
  2. What changes in the solution if the power of xx is negative, e.g., x1/3x^{-1/3}?
  3. What are common applications of definite integrals in physics or engineering?
  4. How do you calculate integrals with irrational exponents like x2x^{\sqrt{2}}?
  5. Can definite integrals be calculated geometrically, and how?

Tip:

Always rewrite roots or radicals in terms of fractional exponents to simplify the integration process!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integrals
Radicals and Fractional Exponents

Formulas

∫ x^n dx = (x^(n+1))/(n+1) + C, for n ≠ -1
∫ [a + b] dx = ∫ a dx + ∫ b dx

Theorems

Power Rule for Integration

Suitable Grade Level

Grades 11-12 or early college