Math Problem Statement

Evaluate

coscos

StartFraction 7 pi Over 12 EndFraction7π12

as

coscos

left parenthesis StartFraction pi Over 4 EndFraction plus StartFraction pi Over 3 EndFraction right parenthesisπ4+π3.

Solution

To evaluate cos(7π12)\cos\left(\frac{7\pi}{12}\right) as cos(π4+π3)\cos\left(\frac{\pi}{4} + \frac{\pi}{3}\right), we will use the sum identity for cosine:

cos(A+B)=cos(A)cos(B)sin(A)sin(B)\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)

In this case, A=π4A = \frac{\pi}{4} and B=π3B = \frac{\pi}{3}. Now let's substitute these into the identity:

cos(π4+π3)=cos(π4)cos(π3)sin(π4)sin(π3)\cos\left(\frac{\pi}{4} + \frac{\pi}{3}\right) = \cos\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{3}\right)

We know the exact values of these trigonometric functions:

  • cos(π4)=22\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}
  • cos(π3)=12\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}
  • sin(π4)=22\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}
  • sin(π3)=32\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}

Now substituting these values:

cos(7π12)=22122232\cos\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2}}{2} \cdot \frac{1}{2} - \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}

Simplifying:

cos(7π12)=2464\cos\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4}

Factoring out 14\frac{1}{4}:

cos(7π12)=14(26)\cos\left(\frac{7\pi}{12}\right) = \frac{1}{4} \left(\sqrt{2} - \sqrt{6}\right)

Thus, the value of cos(7π12)\cos\left(\frac{7\pi}{12}\right) is:

14(26)\boxed{\frac{1}{4} \left(\sqrt{2} - \sqrt{6}\right)}

Would you like further explanation or details? Here are 5 related questions:

  1. How do you derive the sum and difference identities for cosine?
  2. Can you evaluate sin(7π12)\sin\left(\frac{7\pi}{12}\right) using a similar approach?
  3. How would you evaluate trigonometric expressions involving other angles like 5π12\frac{5\pi}{12}?
  4. Can you prove the exact values of cos(π4)\cos\left(\frac{\pi}{4}\right) and sin(π3)\sin\left(\frac{\pi}{3}\right)?
  5. How can you use sum identities to solve trigonometric equations?

Tip: Familiarize yourself with the common angles and their exact trigonometric values; they are frequently useful in many problems!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sum Identity for Cosine

Formulas

cos(A + B) = cos(A)cos(B) - sin(A)sin(B)
cos(π/4) = √2/2
cos(π/3) = 1/2
sin(π/4) = √2/2
sin(π/3) = √3/2

Theorems

Sum Identity for Cosine

Suitable Grade Level

Grades 10-12