Math Problem Statement
Encuentre la ecuación del plano que pasa por los puntos P 5 (1, 2, 1), Q 5 (22, 3, 21) y R 5 (1, 0, 4).
Solution
Para encontrar la ecuación del plano que pasa por tres puntos dados , , y , seguiremos los siguientes pasos:
Paso 1: Encuentra dos vectores en el plano
Calculamos dos vectores que pertenezcan al plano, usando los puntos dados. Por ejemplo, los vectores y .
Paso 2: Calcula el producto cruzado de los dos vectores
El producto cruzado de y nos da un vector normal al plano, que usaremos para definir su ecuación. Calculamos el producto cruzado:
undefinedAsk a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Analytic Geometry
Planes in 3D Space
Vectors
Cross Product
Formulas
Vector subtraction: \overrightarrow{AB} = B - A
Cross product: \overrightarrow{n} = \overrightarrow{PQ} \times \overrightarrow{PR}
Equation of a plane: Ax + By + Cz + D = 0
Theorems
Cross product theorem: The cross product of two vectors in 3D gives a vector perpendicular to both, which is used as the normal vector to define a plane.
Suitable Grade Level
Grades 10-12
Related Recommendation
Find the Equation of a Plane Passing Through Three Points
Find the Plane Equation Passing Through Points P, Q, and R
Find the Equation of a Plane through Three Points (4, 3, 5), (1, 2, 0), (1, 0, 2)
Find the Equation of a Plane through Three Points using Cross Product
Find the Equation of a Plane Through Three Points