Math Problem Statement

Write the equation of this line in slope-intercept form based on the provided graph.

Solution

From the graph provided, we need to determine the equation of the line in slope-intercept form y=mx+by = mx + b, where mm is the slope and bb is the y-intercept.

Step 1: Identify two points on the line

Two visible points on the line are:

  • Point 1: (4,5)(-4, -5)
  • Point 2: (4,3)(4, 3)

Step 2: Calculate the slope mm

The formula for the slope is: m=y2y1x2x1m = \frac{y_2 - y_1}{x_2 - x_1} Substitute the points: m=3(5)4(4)=3+54+4=88=1m = \frac{3 - (-5)}{4 - (-4)} = \frac{3 + 5}{4 + 4} = \frac{8}{8} = 1

So, the slope m=1m = 1.

Step 3: Find the y-intercept bb

The y-intercept is the value of yy when x=0x = 0. Looking at the graph, the line crosses the y-axis at y=1y = -1. Hence, b=1b = -1.

Final Equation

Substitute m=1m = 1 and b=1b = -1 into the slope-intercept form: y=x1y = x - 1

Answer:

The equation of the line is: y=x1y = x - 1

Would you like a further breakdown or explanation of this process?


Here are 5 related questions to deepen your understanding:

  1. How do you determine the slope if the line is horizontal or vertical?
  2. What does the slope of 11 mean in terms of the angle of the line?
  3. Can you derive the equation of a line in point-slope form and then convert it to slope-intercept form?
  4. How would the equation change if the line were parallel to the one in the graph but passed through a different point?
  5. How do you determine the equation of a line given only its graph and no labeled points?

Tip: When finding the slope, remember the order of subtraction (i.e., y2y1y_2 - y_1 and x2x1x_2 - x_1) is essential to avoid sign errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Slope-Intercept Form
Linear Equations
Coordinate Geometry

Formulas

Slope formula: m = (y2 - y1) / (x2 - x1)
Slope-Intercept Form: y = mx + b

Theorems

Slope Formula

Suitable Grade Level

Grades 7-9