Math Problem Statement

Use the ε-δ definition to show that \( \lim_{x \to 2} (x^2 + x - 2) = 1 \).

Solution

We are tasked to use the ε-δ definition of limits to prove:

limx2(x2+x2)=1.\lim_{x \to 2} (x^2 + x - 2) = 1.


The ε-δ Definition of Limits

For a function f(x)f(x), the statement limxaf(x)=L\lim_{x \to a} f(x) = L means that for every ε>0\varepsilon > 0, there exists a δ>0\delta > 0 such that:

0<xa<δ    f(x)L<ε.0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon.

Here:

  • a=2a = 2,
  • f(x)=x2+x2f(x) = x^2 + x - 2,
  • L=1L = 1.

We need to find δ\delta in terms of ε\varepsilon.


Step 1: Setup the condition f(x)L<ε|f(x) - L| < \varepsilon

Start with:

f(x)1<ε.|f(x) - 1| < \varepsilon.

Substitute f(x)=x2+x2f(x) = x^2 + x - 2 and L=1L = 1:

(x2+x2)1<ε.|(x^2 + x - 2) - 1| < \varepsilon.

Simplify the expression inside the absolute value:

x2+x3<ε.|x^2 + x - 3| < \varepsilon.


Step 2: Factor the expression x2+x3x^2 + x - 3

To simplify further, rewrite x2+x3x^2 + x - 3 by factoring or approximating near x=2x = 2.

  1. Start from x2+x3x^2 + x - 3: x2+x3=(x2)(x+3).x^2 + x - 3 = (x - 2)(x + 3).

Thus, the inequality becomes:

(x2)(x+3)<ε.|(x - 2)(x + 3)| < \varepsilon.


Step 3: Control x+3|x + 3| using δ\delta

To isolate x2|x - 2|, note that xx is close to 2, so x+3x + 3 will be close to 5 (since 2+3=52 + 3 = 5).

We can restrict x2<1|x - 2| < 1 (this choice is arbitrary but simplifies calculations). Under this condition:

x is in (21,2+1), or x(1,3).x \text{ is in } (2 - 1, 2 + 1), \text{ or } x \in (1, 3).

Thus:

x+3 is in (1+3,3+3), or x+3(4,6).x + 3 \text{ is in } (1 + 3, 3 + 3), \text{ or } x + 3 \in (4, 6).

This gives:

x+36(since the maximum value in this interval is 6).|x + 3| \leq 6 \quad \text{(since the maximum value in this interval is 6).}


Step 4: Relate ε\varepsilon and δ\delta

Now we have:

(x2)(x+3)<εandx+36.|(x - 2)(x + 3)| < \varepsilon \quad \text{and} \quad |x + 3| \leq 6.

Therefore:

x2x+3<ε    x26<ε.|x - 2| \cdot |x + 3| < \varepsilon \implies |x - 2| \cdot 6 < \varepsilon.

Divide both sides by 6 to isolate x2|x - 2|:

x2<ε6.|x - 2| < \frac{\varepsilon}{6}.


Step 5: Finalize δ\delta

To satisfy the definition, choose:

δ=min(1,ε6).\delta = \min\left(1, \frac{\varepsilon}{6}\right).


Step 6: Verification

If 0<x2<δ0 < |x - 2| < \delta, then:

  1. x2<ε6|x - 2| < \frac{\varepsilon}{6} ensures: (x2)(x+3)x26<ε66=ε.|(x - 2)(x + 3)| \leq |x - 2| \cdot 6 < \frac{\varepsilon}{6} \cdot 6 = \varepsilon.

  2. x2<1|x - 2| < 1 ensures x+36|x + 3| \leq 6.

Thus:

f(x)1=(x2)(x+3)<ε.|f(x) - 1| = |(x - 2)(x + 3)| < \varepsilon.


Conclusion

We have shown that for any ε>0\varepsilon > 0, choosing δ=min(1,ε6)\delta = \min\left(1, \frac{\varepsilon}{6}\right) guarantees f(x)1<ε|f(x) - 1| < \varepsilon whenever 0<x2<δ0 < |x - 2| < \delta. Therefore:

limx2(x2+x2)=1.\lim_{x \to 2} (x^2 + x - 2) = 1.


Do you want more clarification on any step? Here are 5 related questions to practice or expand on:

  1. Prove limx1(x21)=0\lim_{x \to 1} (x^2 - 1) = 0 using the εδ\varepsilon-\delta definition.
  2. How does the εδ\varepsilon-\delta definition of a limit differ for linear versus quadratic functions?
  3. Verify the limit limx3(x29)=0\lim_{x \to 3} (x^2 - 9) = 0 step-by-step.
  4. Why is the restriction x2<1|x - 2| < 1 helpful in this proof?
  5. Prove limxa(x2)=a2\lim_{x \to a} (x^2) = a^2 using the εδ\varepsilon-\delta definition.

Tip: When working with quadratic functions, factorizing the expression and controlling the terms simplifies the proof significantly!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Epsilon-Delta Definition
Quadratic Functions

Formulas

|f(x) - L| < ε
|x - a| < δ

Theorems

Epsilon-Delta Definition of a Limit

Suitable Grade Level

Undergraduate Calculus Level