Math Problem Statement

Tenemos los tres condensadores de la figura, donde C1 = 1.5 μF, C2 = 0.75 μF, y C3 = 0.5 μF; si se aplica entre los bornes A y B una diferencia de potencial de 100 V ¿Cuál es la energía almacenada en cada uno?

Solution

To solve this problem, we need to calculate the energy stored in each capacitor when a potential difference of 100 V is applied across points A and B.

Step 1: Analyzing the Circuit

  1. Identify Capacitor Arrangement: The capacitors C1=1.5 μFC_1 = 1.5 \ \mu\text{F}, C2=0.75 μFC_2 = 0.75 \ \mu\text{F}, and C3=0.5 μFC_3 = 0.5 \ \mu\text{F} are connected in a mixed series-parallel arrangement.
    • C1C_1 and C2C_2 are in series.
    • The combined series result of C1C_1 and C2C_2 is in parallel with C3C_3.

Step 2: Equivalent Capacitance

  1. Calculate Equivalent Capacitance of C1C_1 and C2C_2: 1C12=1C1+1C2\frac{1}{C_{12}} = \frac{1}{C_1} + \frac{1}{C_2} Plugging in the values: [ \frac{1}{C_{12}} = \frac{1}{1.5 \ \mu\text{F}} + \frac{1}{0.75 \ \mu\text{F}} = \frac{1}{1.5} + \frac{1}{0.75} = \frac{2}{1.5} = \frac{2}{1.5} + \frac{4}{

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Capacitance in series and parallel
Energy stored in capacitors

Formulas

1/C_eq = 1/C1 + 1/C2 for series capacitance
C_total = C_series + C_parallel for parallel capacitance
Energy (U) = 0.5 * C * V^2

Theorems

Capacitor combination rules for series and parallel circuits
Energy stored in capacitors formula

Suitable Grade Level

Grades 11-12