Math Problem Statement

Sebuah benda bermassa 10 kg dilepaskan dari keadaan diam pada ketinggian 3 m pada lintasan

landai licin yang melengkung sehingga meluncur pada lintasan lengkung AB yang licin,

selanjutnya lintasan berubah menjadi bidang datar BC yang kasar. Benda berhenti di titik C

yang berjarak 6 m dari titik B. Jika koefisien gesek antara benda dan bidang datar adalah 0.4

dan di ujung bidang datar tersebut terdapat sebuah pegas dengan konstanta kekakuan 2250

N/m. Tentukan :

a. Kecepatan benda di titik B

b. Kecepatan benda di titik C

c. Pemendekan maksimum dari pegas

Sebuah benda bermassa 10 kg dilepaskan dari keadaan diam pada ketinggian 3 m pada lintasan landai licin yang melengkung sehingga meluncur pada lintasan lengkung AB yang licin, selanjutnya lintasan berubah menjadi bidang datar BC yang kasar. Benda berhenti di titik C yang berjarak 6 m dari titik B. Jika koefisien gesek antara benda dan bidang datar adalah 0.4 dan di ujung bidang datar tersebut terdapat sebuah pegas dengan konstanta kekakuan 2250 N/m. Tentukan : a. Kecepatan benda di titik B b. Kecepatan benda di titik C c. Pemendekan maksimum dari pegas

Solution

This problem involves a block sliding down a frictionless incline, then encountering a flat surface with friction, and finally compressing a spring. We'll solve each part step by step:

Given:

  • Mass of the block, m=10kgm = 10 \, \text{kg}
  • Initial height, h=3mh = 3 \, \text{m}
  • Distance from point B to C, d=6md = 6 \, \text{m}
  • Coefficient of friction on BC, μ=0.4\mu = 0.4
  • Spring constant, k=2250N/mk = 2250 \, \text{N/m}
  • Gravitational acceleration, g=9.8m/s2g = 9.8 \, \text{m/s}^2

a) Kecepatan benda di titik B

To calculate the velocity at point B, we use the principle of conservation of mechanical energy. Since the track AB is frictionless, all potential energy at point A is converted to kinetic energy at point B.

  • Potential energy at point A: PEA=mgh=10×9.8×3=294JPE_A = mgh = 10 \times 9.8 \times 3 = 294 \, \text{J}

  • Kinetic energy at point B: KEB=12mvB2KE_B = \frac{1}{2} mv_B^2

Setting PEA=KEBPE_A = KE_B, we get: 294=12×10×vB2294 = \frac{1}{2} \times 10 \times v_B^2 vB2=294×210=58.8v_B^2 = \frac{294 \times 2}{10} = 58.8 vB=58.87.67m/sv_B = \sqrt{58.8} \approx 7.67 \, \text{m/s}

Thus, the velocity at point B is approximately vB=7.67m/sv_B = 7.67 \, \text{m/s}.

b) Kecepatan benda di titik C

Between B and C, the block encounters friction, so the kinetic energy at B is reduced by the work done by friction.

  • Work done by friction: Wfriction=μmgd=0.4×10×9.8×6=235.2JW_{\text{friction}} = \mu m g d = 0.4 \times 10 \times 9.8 \times 6 = 235.2 \, \text{J}

  • Kinetic energy at point C: KEC=KEBWfriction=294235.2=58.8JKE_C = KE_B - W_{\text{friction}} = 294 - 235.2 = 58.8 \, \text{J}

  • Velocity at point C: KEC=12mvC2KE_C = \frac{1}{2} mv_C^2 58.8=12×10×vC258.8 = \frac{1}{2} \times 10 \times v_C^2 vC2=58.8×210=11.76v_C^2 = \frac{58.8 \times 2}{10} = 11.76 vC=11.763.43m/sv_C = \sqrt{11.76} \approx 3.43 \, \text{m/s}

Thus, the velocity at point C is approximately vC=3.43m/sv_C = 3.43 \, \text{m/s}.

c) Pemendekan maksimum dari pegas

At point C, the block compresses the spring. The kinetic energy at C is fully converted into elastic potential energy of the spring.

  • Elastic potential energy of the spring: PEspring=12kx2PE_{\text{spring}} = \frac{1}{2} k x^2

Setting KEC=PEspringKE_C = PE_{\text{spring}}: 58.8=12×2250×x258.8 = \frac{1}{2} \times 2250 \times x^2 x2=58.8×22250=0.05227x^2 = \frac{58.8 \times 2}{2250} = 0.05227 x=0.052270.2285mx = \sqrt{0.05227} \approx 0.2285 \, \text{m}

Thus, the maximum compression of the spring is approximately x=0.2285mx = 0.2285 \, \text{m}.

Final Answers:

a. vB=7.67m/sv_B = 7.67 \, \text{m/s}

b. vC=3.43m/sv_C = 3.43 \, \text{m/s}

c. x=0.2285mx = 0.2285 \, \text{m}

Would you like more details or have any questions?

Here are 5 related questions to extend the concept:

  1. How would the results change if the incline were not frictionless?
  2. What if the mass of the object were doubled?
  3. How would the compression of the spring change with a different spring constant?
  4. How much energy is lost due to friction between points B and C?
  5. How would the system behave if the coefficient of friction increased?

Tip: In problems involving energy conservation, always account for energy losses due to friction when surfaces are not frictionless.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Energy Conservation
Kinetic Energy
Potential Energy
Work-Energy Principle
Elastic Potential Energy

Formulas

Potential energy formula: PE = mgh
Kinetic energy formula: KE = (1/2)mv^2
Work done by friction: W = μmgd
Elastic potential energy formula: PE_spring = (1/2)kx^2

Theorems

Conservation of Mechanical Energy

Suitable Grade Level

Grades 10-12