Math Problem Statement

Ein Körper der Masse m wird in der Höhe z1 losgelassen und trifft bei z = 0 auf das Ende einer senkrecht stehenden Feder mit der Federkonstanten k, die den Fall bremst. (Die Masse der Feder wird vernachlässigt.)

Solution

Thank you for uploading the problem. I will work on sketching and solving the key parts of the given tasks. I’ll start by solving or visualizing the first question (M4.2) and providing diagrams or graphs where needed. Let me extract the main details and proceed.import numpy as np import matplotlib.pyplot as plt

Constants for M4.2

m = 10.0 # mass in kg k = 1.96e3 # spring constant in N/m z1 = 0.6 # initial height in m z3 = -0.1 # compressed spring position in m z4 = 0.4 # height to fall from in m g = 9.81 # gravity in m/s^2

Potential energy of the system as a function of z

z_range = np.linspace(-0.3, 0.6, 500) potential_energy = m * g * z_range + 0.5 * k * np.maximum(0, -z_range)**2

Plotting the total potential energy

plt.figure(figsize=(8, 6)) plt.plot(z_range, potential_energy, label="Total Potential Energy") plt.axvline(x=z3, color='r', linestyle='--', label="Spring Compression (z3)") plt.axvline(x=0, color='g', linestyle='--', label="Spring Rest Position (z=0)") plt.title("Total Potential Energy of the System") plt.xlabel("z-position (m)") plt.ylabel("Potential Energy (J)") plt.legend() plt.grid() plt.show() <<ImageDisplayed>>

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Classical Mechanics
Energy Conservation
Potential Energy
Kinetic Energy
Spring Force

Formulas

Potential energy: U = m * g * h
Spring energy: U_spring = 0.5 * k * x^2
Kinetic energy: K = 0.5 * m * v^2
Energy conservation: E_total = U_gravity + U_spring + K

Theorems

Energy Conservation Principle
Hooke's Law

Suitable Grade Level

Undergraduate Physics (First-Year)