Math Problem Statement

1.256=-µ0N2AgI2(AgAc1µrlc+2x)2 Substitute N=20, µr=1740, {\mu0\ =\ 1.26\ x\ {10}^{-6}10\ Tm/A\ \ \ \ l}_c=0.13885m\ x=airgap=0.0004m A_g=A_c=17.5x25=430{\rm mm}^2=0.00043m^2

Solution

To solve the equation

1.256=μ0N2AgI2(AgAclc+2x)21.256 = -\mu_0 N^2 A_g I^2 \left(A_g A_c l_c + 2x\right)^2

by substituting the given values, let's go through it step by step. Here are the provided parameters:

  • N=20N = 20
  • μr=1740\mu_r = 1740
  • μ0=1.26×106Tm/A\mu_0 = 1.26 \times 10^{-6} \, \text{Tm/A}
  • lc=0.13885ml_c = 0.13885 \, \text{m}
  • x=air gap=0.0004mx = \text{air gap} = 0.0004 \, \text{m}
  • Ag=Ac=17.5×25=430mm2=0.00043m2A_g = A_c = 17.5 \times 25 = 430 \, \text{mm}^2 = 0.00043 \, \text{m}^2

Let's substitute these values into the equation and simplify:

Step 1: Substituting values into the equation

Given:

1.256=(1.26×106)(20)2(0.00043)I2(0.000430.000430.13885+20.0004)21.256 = - (1.26 \times 10^{-6}) \cdot (20)^2 \cdot (0.00043) \cdot I^2 \left(0.00043 \cdot 0.00043 \cdot 0.13885 + 2 \cdot 0.0004\right)^2

Step 2: Simplifying the expression inside the parentheses

  1. Calculate N2N^2: N2=202=400N^2 = 20^2 = 400

  2. Calculate AgAclcA_g \cdot A_c \cdot l_c: AgAclc=0.000430.000430.13885A_g \cdot A_c \cdot l_c = 0.00043 \cdot 0.00043 \cdot 0.13885

  3. Add 2x2x: 2x=20.0004=0.00082x = 2 \cdot 0.0004 = 0.0008

Then sum AgAclc+2xA_g \cdot A_c \cdot l_c + 2x and square this term.

Step 3: Solve for I2I^2

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Electromagnetism
Substitution
Algebraic Manipulation

Formulas

Magnetic flux equation: 1.256 = -μ0 * N^2 * Ag * I^2 * (Ag * Ac * μr * lc + 2x)^2
Magnetic permeability: μ = μ0 * μr

Theorems

Laws of Magnetic Flux

Suitable Grade Level

Undergraduate - Engineering