Math Problem Statement
Suatu rangkaian listrik menghasilkan kuat arus listrik yang dirumuskan dengan I(t) = 1, 8 sin ((4pi)/9 - (5pi)/12) dengan 1 menyatakan kuat arus listrik (dalam ampere) dan t menyatakan waktu (dalam detik) .Perbandingan perubahan kuat arus listrik terhadap perubahan waktu pada saat 1,5 detik dirumuskan dengan lim h -> 0 (I(1, 5 + h) - I(1, 5))/h Besar perbandingan perubahan kuat arus listrik terhadap perubahan waktu pada saat 1,5 detik adalah
Α. 0.4pi
Β. 0, 4pi * sqrt(2)
C. 0, 4pi * sqrt(3)
D .0, 6pi * sqrt(2)
Ε. 0, 6pi
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Differentiation
Trigonometric Functions
Limits
Formulas
I(t) = 1.8 * sin((4π/9) * t - (5π/12))
Derivative of sin(x): cos(x) * d/dt(x)
Theorems
Chain Rule in Differentiation
Limit Definition of Derivative
Suitable Grade Level
Grade 12 and University Level
Related Recommendation
Calculating the Rate of Change of Electric Current at t = 1.5 for a Trigonometric Function
Calculating the Derivative of h(t) = 0.8sin[(pi/2)(t-1)] + 1.8
Velocity of a Particle in Simple Harmonic Motion: x(t) = 5(sin(2t))^5
Finding the Derivative of H(t) = 0.8sin((π/2)(t-1)) + 1.8
Derivative of y = 4 cos⁻¹(x / 5) using the Chain Rule