Math Problem Statement

Find the eigenvalues and eigenvectors for the matrix A = [[5, 0], [6, -1]].

Solution

The task requires finding eigenvalues λ1\lambda_1 and λ2\lambda_2 (with λ1<λ2\lambda_1 < \lambda_2) and their corresponding eigenvectors for the matrix

A=[5061].A = \begin{bmatrix} 5 & 0 \\ 6 & -1 \end{bmatrix}.

Step 1: Find the eigenvalues

The eigenvalues of a matrix AA are found by solving the characteristic equation: det(AλI)=0,\det(A - \lambda I) = 0, where II is the identity matrix.

For A=[5061]A = \begin{bmatrix} 5 & 0 \\ 6 & -1 \end{bmatrix}, we calculate: AλI=[5λ061λ].A - \lambda I = \begin{bmatrix} 5 - \lambda & 0 \\ 6 & -1 - \lambda \end{bmatrix}.

The determinant is: det(AλI)=(5λ)(1λ)(60).\det(A - \lambda I) = (5 - \lambda)(-1 - \lambda) - (6 \cdot 0).

Simplify: det(AλI)=(5λ)(1λ)=55λ+λ+λ2=λ24λ5.\det(A - \lambda I) = (5 - \lambda)(-1 - \lambda) = -5 - 5\lambda + \lambda + \lambda^2 = \lambda^2 - 4\lambda - 5.

Set this equal to 0: λ24λ5=0.\lambda^2 - 4\lambda - 5 = 0.

Solve the quadratic equation using the quadratic formula: λ=b±b24ac2a,\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=1a = 1, b=4b = -4, and c=5c = -5. Substituting: λ=(4)±(4)24(1)(5)2(1)=4±16+202=4±362.\lambda = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(-5)}}{2(1)} = \frac{4 \pm \sqrt{16 + 20}}{2} = \frac{4 \pm \sqrt{36}}{2}.

λ=4±62.\lambda = \frac{4 \pm 6}{2}.

Thus: λ1=462=1,λ2=4+62=5.\lambda_1 = \frac{4 - 6}{2} = -1, \quad \lambda_2 = \frac{4 + 6}{2} = 5.

Step 2: Find eigenvectors

For each eigenvalue λ\lambda, solve (AλI)X=0(A - \lambda I)\vec{X} = 0.

For λ1=1\lambda_1 = -1:

A(1)I=A+I=[5+1061+1]=[6060].A - (-1)I = A + I = \begin{bmatrix} 5 + 1 & 0 \\ 6 & -1 + 1 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 6 & 0 \end{bmatrix}.

The system (A(1)I)X=0(A - (-1)I)\vec{X} = 0 becomes: [6060][x1x2]=[00].\begin{bmatrix} 6 & 0 \\ 6 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.

From the first row: 6x1=0    x1=0.6x_1 = 0 \implies x_1 = 0.

Let x2=tx_2 = t, where tRt \in \mathbb{R}. The eigenvector is: X1=[01].\vec{X}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.

For λ2=5\lambda_2 = 5:

A5I=[550615]=[0066].A - 5I = \begin{bmatrix} 5 - 5 & 0 \\ 6 & -1 - 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 6 & -6 \end{bmatrix}.

The system (A5I)X=0(A - 5I)\vec{X} = 0 becomes: [0066][x1x2]=[00].\begin{bmatrix} 0 & 0 \\ 6 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.

From the second row: 6x16x2=0    x1=x2.6x_1 - 6x_2 = 0 \implies x_1 = x_2.

Let x1=tx_1 = t. Then x2=tx_2 = t, and the eigenvector is: X2=[11].\vec{X}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.

Final Answer:

  • Eigenvalues: λ1=1,λ2=5\lambda_1 = -1, \lambda_2 = 5,
  • Corresponding eigenvectors: X1=[01],X2=[11].\vec{X}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \vec{X}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.

Would you like detailed steps on a specific part?


Follow-Up Questions:

  1. How are eigenvalues used in real-world applications?
  2. Can eigenvalues for 3×33 \times 3 matrices be calculated similarly?
  3. What happens if the eigenvalues are complex numbers?
  4. How do eigenvectors relate to transformations in linear algebra?
  5. What are some special properties of symmetric matrices' eigenvalues?

Tip:

Always double-check the characteristic equation for calculation errors when solving for eigenvalues!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Eigenvalues
Eigenvectors
Determinants
Quadratic Equations

Formulas

Characteristic equation: det(A - λI) = 0
Quadratic formula: λ = (-b ± sqrt(b^2 - 4ac)) / 2a

Theorems

Eigenvalue equation
Diagonalization theorem

Suitable Grade Level

Grades 11-12