Math Problem Statement

compute eigenvalue and eigenvectors for the following matrix:

2 0 0 0 1 0 0 1 2

Solution

Given the matrix:

A=[200010012]A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}

Step 1: Finding the Eigenvalues

The eigenvalues of a matrix AA are found by solving the characteristic equation:

det(AλI)=0\det(A - \lambda I) = 0

where λ\lambda is the eigenvalue and II is the identity matrix. Let's compute:

AλI=[200010012][λ000λ000λ]=[2λ0001λ0012λ]A - \lambda I = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 1 & 2 - \lambda \end{bmatrix}

Next, we compute the determinant:

det(AλI)=2λ0001λ0012λ\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 1 & 2 - \lambda \end{vmatrix}

This simplifies to:

(2λ)×1λ012λ=(2λ)×((1λ)(2λ)0)=(2λ)(λ23λ+2)(2 - \lambda) \times \begin{vmatrix} 1 - \lambda & 0 \\ 1 & 2 - \lambda \end{vmatrix} = (2 - \lambda) \times ((1 - \lambda)(2 - \lambda) - 0) = (2 - \lambda)(\lambda^2 - 3\lambda + 2)

Setting the determinant to zero:

(2λ)(λ23λ+2)=0(2 - \lambda)(\lambda^2 - 3\lambda + 2) = 0

The roots of this equation give the eigenvalues. Solving each factor:

  1. 2λ=0λ=22 - \lambda = 0 \Rightarrow \lambda = 2
  2. λ23λ+2=0(λ1)(λ2)=0\lambda^2 - 3\lambda + 2 = 0 \Rightarrow (\lambda - 1)(\lambda - 2) = 0

Thus, the eigenvalues are:

λ=2,λ=1,λ=2\lambda = 2, \quad \lambda = 1, \quad \lambda = 2

Step 2: Finding the Eigenvectors

For each eigenvalue λ\lambda, solve (AλI)v=0(A - \lambda I) \mathbf{v} = 0 to find the corresponding eigenvectors.

  1. Eigenvalue λ=2\lambda = 2:

A2I=[200010012][200020002]=[000010010]A - 2I = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{bmatrix}

Solve [000010010][xyz]=[000]\begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.

This gives the equations:

{y=0y+0=0y=0\begin{cases} -y = 0 \\ y + 0 = 0 \end{cases} \Rightarrow y = 0

So, xx and zz are free variables. A general solution is:

v=[x0z]=x[100]+z[001]\mathbf{v} = \begin{bmatrix} x \\ 0 \\ z \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}

Two linearly independent eigenvectors are:

[100],[001]\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}

  1. Eigenvalue λ=1\lambda = 1:

AI=[200010012][100010001]=[100000011]A - I = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}

Solve [100000011][xyz]=[000]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.

This gives the equations:

{x=0y+z=0x=0,y=z\begin{cases} x = 0 \\ y + z = 0 \end{cases} \Rightarrow x = 0, \, y = -z

So, a general solution is:

v=[0zz]=z[011]\mathbf{v} = \begin{bmatrix} 0 \\ -z \\ z \end{bmatrix} = z \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}

An eigenvector corresponding to λ=1\lambda = 1 is:

[011]\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}

Final Answer

  • Eigenvalues: λ=2,1,2\lambda = 2, \, 1, \, 2

  • Eigenvectors:

    • For λ=2\lambda = 2: ( \begin{bmatrix} 1 \ 0 \ 0 \end{

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Eigenvalues
Eigenvectors
Determinants
Matrices

Formulas

det(A - λI) = 0 (Characteristic Equation)
(A - λI) v = 0 (Eigenvector Equation)

Theorems

Eigenvalue Theorem
Determinant Properties
Characteristic Polynomial

Suitable Grade Level

Undergraduate or Advanced High School (Grades 11-12)