Given the matrix:
A=200011002
Step 1: Finding the Eigenvalues
The eigenvalues of a matrix A are found by solving the characteristic equation:
det(A−λI)=0
where λ is the eigenvalue and I is the identity matrix. Let's compute:
A−λI=200011002−λ000λ000λ=2−λ0001−λ1002−λ
Next, we compute the determinant:
det(A−λI)=2−λ0001−λ1002−λ
This simplifies to:
(2−λ)×1−λ102−λ=(2−λ)×((1−λ)(2−λ)−0)=(2−λ)(λ2−3λ+2)
Setting the determinant to zero:
(2−λ)(λ2−3λ+2)=0
The roots of this equation give the eigenvalues. Solving each factor:
- 2−λ=0⇒λ=2
- λ2−3λ+2=0⇒(λ−1)(λ−2)=0
Thus, the eigenvalues are:
λ=2,λ=1,λ=2
Step 2: Finding the Eigenvectors
For each eigenvalue λ, solve (A−λI)v=0 to find the corresponding eigenvectors.
- Eigenvalue λ=2:
A−2I=200011002−200020002=0000−11000
Solve 0000−11000xyz=000.
This gives the equations:
{−y=0y+0=0⇒y=0
So, x and z are free variables. A general solution is:
v=x0z=x100+z001
Two linearly independent eigenvectors are:
100,001
- Eigenvalue λ=1:
A−I=200011002−100010001=100001001
Solve 100001001xyz=000.
This gives the equations:
{x=0y+z=0⇒x=0,y=−z
So, a general solution is:
v=0−zz=z0−11
An eigenvector corresponding to λ=1 is:
0−11
Final Answer
-
Eigenvalues: λ=2,1,2
-
Eigenvectors:
- For λ=2: ( \begin{bmatrix} 1 \ 0 \ 0 \end{