Math Problem Statement

calcuate the double integral(e^(x/y))dydx for [sqrt(x),1]x[0,1]

Solution

We are tasked with evaluating the double integral:

01x1exydydx\int_0^1 \int_{\sqrt{x}}^1 e^{\frac{x}{y}} \, dy \, dx

Step-by-step solution:

  1. Inner Integral (with respect to yy): I1=x1exydyI_1 = \int_{\sqrt{x}}^1 e^{\frac{x}{y}} \, dy

    To solve this, let's use the substitution method:

    • Let u=xyu = \frac{x}{y}, which gives du=xy2dydu = -\frac{x}{y^2} dy, and rearranging gives dy=y2xdudy = -\frac{y^2}{x} du.

    Substituting the bounds:

    • When y=xy = \sqrt{x}, u=xx=xu = \frac{x}{\sqrt{x}} = \sqrt{x}.
    • When y=1y = 1, u=xu = x.
  2. Outer Integral (with respect to xx):

    After finding the result of the inner integral, we can integrate with respect to xx over the interval [0,1][0, 1].

Let me proceed to calculate the double integral.The value of the double integral

01x1exydydx\int_0^1 \int_{\sqrt{x}}^1 e^{\frac{x}{y}} \, dy \, dx

is 12\frac{1}{2}.

Would you like further details or have any questions?

Here are some related problems to explore:

  1. Evaluate 010xex+ydydx\int_0^1 \int_0^x e^{x+y} \, dy \, dx.
  2. Find the double integral 010xy2dydx\int_0^1 \int_0^x y^2 \, dy \, dx.
  3. Compute 0101xydydx\int_0^1 \int_0^1 xy \, dy \, dx.
  4. Solve 020xsin(y)dydx\int_0^2 \int_0^x \sin(y) \, dy \, dx.
  5. Determine 0101ex+ydydx\int_0^1 \int_0^1 e^{x+y} \, dy \, dx.

Tip: When dealing with nested integrals, always integrate step-by-step, starting from the inner integral.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double Integrals
Exponential Functions
Substitution Method

Formulas

Double integral: \( \int_0^1 \int_{\sqrt{x}}^1 e^{\frac{x}{y}} \, dy \, dx \)
Substitution: Let \( u = \frac{x}{y} \)

Theorems

Fundamental Theorem of Calculus
Substitution Rule for Integration

Suitable Grade Level

College/University (Calculus II or III)