Math Problem Statement
Beräkna
∬D (11/3−2/3 y)/(1+x)2 dxdy
där D är det begränsade område som innesluts av kurvorna x=8/3−2/3 y och x=1/3 y2 .
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Double Integrals
Region Bounded by Curves
Integration by Substitution
Formulas
∬D f(x,y) dx dy
Quadratic equation: ax^2 + bx + c = 0
Substitution: u = 1 + x, du = dx
Integral of u^(-2): ∫ u^(-2) du = -u^(-1)
Theorems
Fundamental Theorem of Calculus
Change of Variables in Integration
Suitable Grade Level
University Level (Calculus II or Multivariable Calculus)
Related Recommendation
Evaluate the Double Integral ∫∫ (x + 3x^(1/2)y*(1/3)) dxdy
Evaluate Double Integral Over Triangular Region with Square Root
Evaluate the Double Integral of (xy^3) / (x^2 + 1) over Region R
Evaluate Double Integral with Region Bounded by a Line and Parabola
Solve the Double Integral ∫₀¹ ∫ₓ²¹ (xy)/(√(1+y³)) dy dx