Math Problem Statement

Consider the a→=i→+4j→−k→,b→=−i→−4j→+k→,c→=4i→+j→+5k→d→=−i→−4j→+k→,g→=−i→−j→+4k→.Which pairs (if any) of these vectors are

(a) Are perpendicular?

(Enter none or a pair or list of pairs, e.g., if a→ is perpendicular to b→ and c→, enter (a,b),(a,c).)

(b) Are parallel?

(Enter none or a pair or list of pairs, e.g., if a→ is parallel to b→ and c→, enter (a,b),(a,c).)

(c) Have an angles less than π/2 between them?

(Enter none or a pair or list of pairs, e.g., if a→ is at an angle less than pi/2 from b→ and c→, enter (a,b),(a,c).)

(d) Have an angle of more than π/2 between them?

(Enter none or a pair or list of pairs, e.g., if a→ is at an angle greater than pi/2 from b→ and c→, enter (a,b),(a,c).)

Solution

Let's address each of the parts systematically.

We are given the following vectors:

a=i^+4j^k^,b=i^4j^+k^,c=4i^+j^+5k^,d=i^4j^+k^,g=i^j^+4k^\mathbf{a} = \hat{i} + 4\hat{j} - \hat{k}, \quad \mathbf{b} = -\hat{i} - 4\hat{j} + \hat{k}, \quad \mathbf{c} = 4\hat{i} + \hat{j} + 5\hat{k}, \quad \mathbf{d} = -\hat{i} - 4\hat{j} + \hat{k}, \quad \mathbf{g} = -\hat{i} - \hat{j} + 4\hat{k}

(a) Are perpendicular?

Vectors are perpendicular if their dot product is zero, i.e., uv=0\mathbf{u} \cdot \mathbf{v} = 0.

We calculate the dot product between each pair of vectors and check if it equals 0.

Dot products:

  1. ab=(1)(1)+(4)(4)+(1)(1)=1161=18\mathbf{a} \cdot \mathbf{b} = (1)(-1) + (4)(-4) + (-1)(1) = -1 - 16 - 1 = -18

    • Not perpendicular.
  2. ac=(1)(4)+(4)(1)+(1)(5)=4+45=3\mathbf{a} \cdot \mathbf{c} = (1)(4) + (4)(1) + (-1)(5) = 4 + 4 - 5 = 3

    • Not perpendicular.
  3. ad=(1)(1)+(4)(4)+(1)(1)=1161=18\mathbf{a} \cdot \mathbf{d} = (1)(-1) + (4)(-4) + (-1)(1) = -1 - 16 - 1 = -18

    • Not perpendicular.
  4. ag=(1)(1)+(4)(1)+(1)(4)=144=9\mathbf{a} \cdot \mathbf{g} = (1)(-1) + (4)(-1) + (-1)(4) = -1 - 4 - 4 = -9

    • Not perpendicular.
  5. bc=(1)(4)+(4)(1)+(1)(5)=44+5=3\mathbf{b} \cdot \mathbf{c} = (-1)(4) + (-4)(1) + (1)(5) = -4 - 4 + 5 = -3

    • Not perpendicular.
  6. bd=(1)(1)+(4)(4)+(1)(1)=1+16+1=18\mathbf{b} \cdot \mathbf{d} = (-1)(-1) + (-4)(-4) + (1)(1) = 1 + 16 + 1 = 18

    • Not perpendicular.
  7. bg=(1)(1)+(4)(1)+(1)(4)=1+4+4=9\mathbf{b} \cdot \mathbf{g} = (-1)(-1) + (-4)(-1) + (1)(4) = 1 + 4 + 4 = 9

    • Not perpendicular.
  8. cd=(4)(1)+(1)(4)+(5)(1)=44+5=3\mathbf{c} \cdot \mathbf{d} = (4)(-1) + (1)(-4) + (5)(1) = -4 - 4 + 5 = -3

    • Not perpendicular.
  9. cg=(4)(1)+(1)(1)+(5)(4)=41+20=15\mathbf{c} \cdot \mathbf{g} = (4)(-1) + (1)(-1) + (5)(4) = -4 - 1 + 20 = 15

    • Not perpendicular.
  10. (\mathbf{d} \cdot \mathbf{g} = (-1)(-1) + (-4)(-1) + (1)(4)

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Dot Product
Vector Perpendicularity
Vector Parallelism
Angle Between Vectors

Formulas

Dot Product formula: u·v = u1v1 + u2v2 + u3v3
Perpendicular condition: u·v = 0
Parallel condition: u = k * v

Theorems

Condition for perpendicular vectors
Condition for parallel vectors

Suitable Grade Level

Grades 11-12