Math Problem Statement

domain and range of 1/(1-2cosx)

Solution

To find the domain and range of the function f(x)=112cos(x)f(x) = \frac{1}{1 - 2\cos(x)}, let's analyze it step by step:

Domain:

The domain of f(x)f(x) is determined by the condition that the denominator cannot be zero: 12cos(x)01 - 2\cos(x) \neq 0 This gives: cos(x)12\cos(x) \neq \frac{1}{2} The cosine function equals 12\frac{1}{2} at: x2nπ±π3,nZx \neq 2n\pi \pm \frac{\pi}{3}, \quad n \in \mathbb{Z} Thus, the domain of f(x)f(x) is: xR{2nπ±π3nZ}.x \in \mathbb{R} \setminus \{ 2n\pi \pm \frac{\pi}{3} \, | \, n \in \mathbb{Z} \}.

Range:

To find the range, we analyze the behavior of f(x)f(x): f(x)=112cos(x).f(x) = \frac{1}{1 - 2\cos(x)}. The cosine function satisfies 1cos(x)1-1 \leq \cos(x) \leq 1, so: 12cos(x)[1,3].1 - 2\cos(x) \in [-1, 3]. However, the denominator cannot equal zero (cos(x)12\cos(x) \neq \frac{1}{2}), so: 12cos(x)[1,12)(12,3].1 - 2\cos(x) \in [-1, \frac{1}{2}) \cup (\frac{1}{2}, 3]. The reciprocal 1y\frac{1}{y} inverts and flips the intervals, giving: f(x)(,1][13,).f(x) \in (-\infty, -1] \cup \left[\frac{1}{3}, \infty\right).

Final Answer:

  • Domain: xR{2nπ±π3nZ}.x \in \mathbb{R} \setminus \{ 2n\pi \pm \frac{\pi}{3} \, | \, n \in \mathbb{Z} \}.
  • Range: f(x)(,1][13,).f(x) \in (-\infty, -1] \cup \left[\frac{1}{3}, \infty\right).

Would you like a detailed explanation of the derivation steps?

Related Questions:

  1. How does the periodicity of cos(x)\cos(x) affect the domain?
  2. Can we graph f(x)f(x) to visualize the domain and range?
  3. How do we handle functions with reciprocal trigonometric components?
  4. What happens if cos(x)=1\cos(x) = 1 or cos(x)=1\cos(x) = -1?
  5. What are the vertical asymptotes of f(x)f(x)?

Tip:

To analyze the range of functions involving trigonometric reciprocals, consider the intervals where the denominator becomes positive or negative.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Functions
Domain and Range Analysis
Reciprocal Functions

Formulas

f(x) = 1 / (1 - 2cos(x))
cos(x) = 1/2 at x = 2nπ ± π/3, n ∈ Z

Theorems

Properties of the cosine function
Domain restrictions due to division by zero
Range analysis via reciprocal functions

Suitable Grade Level

Grades 10-12