Math Problem Statement

Find the domain of g(x)=log(x+4x2−9)g(x)=log(x+4x2-9). Write the answer in interval notation.

Solution

To find the domain of the function g(x)=log(x+4x29)g(x) = \log(x + 4x^2 - 9), we need to determine when the argument of the logarithm is positive:

x+4x29>0x + 4x^2 - 9 > 0

This can be rearranged as:

4x2+x9>04x^2 + x - 9 > 0

Next, we will find the roots of the quadratic equation 4x2+x9=04x^2 + x - 9 = 0 using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Here, a=4a = 4, b=1b = 1, and c=9c = -9:

x=1±1244(9)24x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 4 \cdot (-9)}}{2 \cdot 4} x=1±1+1448x = \frac{-1 \pm \sqrt{1 + 144}}{8} x=1±1458x = \frac{-1 \pm \sqrt{145}}{8}

Calculating the roots:

x1=1+1458,x2=11458x_1 = \frac{-1 + \sqrt{145}}{8}, \quad x_2 = \frac{-1 - \sqrt{145}}{8}

Now, let's evaluate the approximate values of the roots:

  • 14512.04\sqrt{145} \approx 12.04
  • Thus, x111.0481.38x_1 \approx \frac{11.04}{8} \approx 1.38
  • And x213.0481.63x_2 \approx \frac{-13.04}{8} \approx -1.63

Now we have two roots: x11.38x_1 \approx 1.38 and x21.63x_2 \approx -1.63.

Next, we need to test the intervals defined by these roots: (,x2)(-\infty, x_2), (x2,x1)(x_2, x_1), and (x1,)(x_1, \infty).

  1. Interval (,1.63)(-\infty, -1.63): Choose x=2x = -2: 4(2)2+(2)9=1629=5>04(-2)^2 + (-2) - 9 = 16 - 2 - 9 = 5 > 0

  2. Interval (1.63,1.38)(-1.63, 1.38): Choose x=0x = 0: 4(0)2+(0)9=9<04(0)^2 + (0) - 9 = -9 < 0

  3. Interval (1.38,)(1.38, \infty): Choose x=2x = 2: 4(2)2+(2)9=16+29=9>04(2)^2 + (2) - 9 = 16 + 2 - 9 = 9 > 0

From this analysis, we find that the function is positive in the intervals:

  • (,1.63)(-\infty, -1.63)
  • (1.38,)(1.38, \infty)

Thus, the domain of g(x)g(x) in interval notation is:

(,11458)(1+1458,)(-\infty, \frac{-1 - \sqrt{145}}{8}) \cup (\frac{-1 + \sqrt{145}}{8}, \infty)

If you have any questions or need further details, let me know! Here are some related questions you might consider:

  1. What is the range of the function g(x)g(x)?
  2. How do you find the critical points of g(x)g(x)?
  3. What is the behavior of g(x)g(x) at the boundaries of the domain?
  4. How can you graph the function g(x)g(x)?
  5. What happens to g(x)g(x) as xx approaches the roots?

Tip: Always check if the argument of a logarithmic function is positive to determine its domain!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithmic Functions
Quadratic Inequalities

Formulas

Quadratic formula: x = (-b ± √(b² - 4ac)) / (2a)
Logarithm domain condition: argument > 0

Theorems

Conditions for the domain of logarithmic functions

Suitable Grade Level

Grades 9-12