Math Problem Statement

GUIA DE EVIDENCIAS 1-MATE II.pdf

80.74 KB

del 5 al 16 del 17 al 28 Y del 54 al 57

Solution

Here are the specific math problems you mentioned from the document:

From 5 to 16 (Domain Problems):

  • 5. f(x)=8xf(x) = \frac{8}{x}
    1. g(x)=x5g(x) = \frac{x}{5}
    1. h(x)=x3h(x) = x - 3
    1. K(z)=1z1K(z) = \frac{1}{z - 1}
    1. f(z)=3z22z+4f(z) = 3z^2 - 2z + 4
    1. H(x)=xx8H(x) = \frac{x}{x - 8}
    1. f(x)=9x92x7f(x) = \frac{9x - 9}{2x - 7}
    1. g(x)=4x3g(x) = 4x - 3
    1. g(y)=4y24y+4g(y) = \frac{4}{y^2 - 4y + 4}
    1. f(x)=x5x2x6f(x) = \frac{x - 5}{x^2 - x - 6}
    1. h(s)=4s22s27s4h(s) = \frac{4 - s^2}{2s^2 - 7s - 4}
    1. G(r)=2r21G(r) = \frac{2}{r^2 - 1}

From 17 to 28 (Evaluate the Function):

  • 17. f(x)=2x1f(x) = 2x - 1
    1. H(s)=5s23H(s) = 5s^2 - 3
    1. G(x)=2x2G(x) = 2 - x^2
    1. F(g(x))=5xF(g(x)) = -5x
    1. u=2u2uu = 2u^2 - u
    1. h(y)=1vh(y) = \frac{1}{v}
    1. f(x)=x22x+1f(x) = x^2 - 2x + 1
    1. H(x)=(x4)2H(x) = (x - 4)^2
    1. k(x)=x7x22k(x) = \frac{x - 7}{x^2 - 2}
    1. k(x)=x3k(x) = \sqrt{x - 3}
    1. f(x)=x4/3f(x) = x^{4/3}
    1. g(x)=x2/5g(x) = x^{2/5}

From 54 to 57 (Calculator-Based Function Evaluation):

  • 54. f(x)=2.03x35.27x2+13.71f(x) = 2.03x^3 - 5.27x^2 + 13.71
    • f(1.73),f(5.78),f(2)f(1.73), f(-5.78), f(\sqrt{2})
    1. f(x)=14.7x23.95x+15.7624.3x3f(x) = \frac{14.7x^2 - 3.95x + 15.76}{24.3 - x^3}
    • f(4),f(174),f(π)f(4), f\left(-\frac{17}{4}\right), f(\pi)
    1. f(x)=(20.33.2x)(2.25x27.1x+16)4f(x) = (20.3 - 3.2x)(2.25x^2 - 7.1x + 16)^4
    • f(0.3),f(0.02),f(1.9)f(0.3), f(-0.02), f(1.9)
    1. f(x)=2x2+7.31(x1)5.03f(x) = \frac{\sqrt{2x^2 + 7.31(x - 1)}}{5.03}
    • f(12.35),f(123),f(0)f(12.35), f(-123), f(0)

Would you like detailed solutions or explanations for any of these problems?

5 Related Questions:

  1. How do you find the domain of a rational function?
  2. What are the steps to evaluate a function at a given value?
  3. How do square roots in functions affect the domain?
  4. What are common issues when simplifying complex fractions?
  5. How do you use a calculator for evaluating higher-degree polynomials?

Tip: Always check the denominator when determining the domain to avoid division by zero!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Domain of functions
Function evaluation
Rational functions
Polynomial functions
Square root and fractional exponents

Formulas

Domain determination formula for rational functions
Function evaluation methods
Square root formula
Exponentiation rules

Theorems

Rational function domain theorem
Square root function domain restriction

Suitable Grade Level

Grades 9-12