Math Problem Statement

Suppose a particle moves along a straight line with velocity v(t) = t^2 e^{-2 t} meters per second after t seconds.

It travels ______ meters during the first t seconds.

Solution

To find the distance traveled by the particle during the first tt seconds, we need to integrate the velocity function v(t)=t2e2tv(t) = t^2 e^{-2t} with respect to time over the interval from 00 to tt.

The formula for the distance traveled is given by:

Distance=0tv(τ)dτ=0tτ2e2τdτ\text{Distance} = \int_0^t v(\tau) \, d\tau = \int_0^t \tau^2 e^{-2\tau} \, d\tau

Let's calculate the integral of τ2e2τ\tau^2 e^{-2\tau} from 00 to tt. The integral can be solved using integration by parts.

Step 1: Set up integration by parts

We apply the formula for integration by parts: udv=uvvdu\int u \, dv = uv - \int v \, du Let:

  • u=τ2u = \tau^2 and dv=e2τdτdv = e^{-2\tau} d\tau

Now, we differentiate uu and integrate dvdv:

  • du=2τdτdu = 2\tau d\tau
  • v=12e2τv = -\frac{1}{2} e^{-2\tau} (since e2τdτ=12e2τ\int e^{-2\tau} \, d\tau = -\frac{1}{2} e^{-2\tau})

Step 2: Apply integration by parts

0tτ2e2τdτ=[τ2(12e2τ)]0t+0t2τ(12e2τ)dτ\int_0^t \tau^2 e^{-2\tau} \, d\tau = \left[ \tau^2 \left( -\frac{1}{2} e^{-2\tau} \right) \right]_0^t + \int_0^t 2\tau \left( -\frac{1}{2} e^{-2\tau} \right) \, d\tau

Let's now compute this step by step:

  1. First term: [12τ2e2τ]0t=12t2e2t0=12t2e2t\left[ -\frac{1}{2} \tau^2 e^{-2\tau} \right]_0^t = -\frac{1}{2} t^2 e^{-2t} - 0 = -\frac{1}{2} t^2 e^{-2t}

  2. The remaining integral: 0tτe2τdτ\int_0^t \tau e^{-2\tau} \, d\tau This also requires integration by parts. Let:

  • u=τu = \tau and dv=e2τdτdv = e^{-2\tau} d\tau

Differentiate uu and integrate dvdv:

  • du=dτdu = d\tau
  • v=12e2τv = -\frac{1}{2} e^{-2\tau}

Using integration by parts again:

0tτe2τdτ=[τ(12e2τ)]0t+0t(12e2τ)dτ\int_0^t \tau e^{-2\tau} \, d\tau = \left[ \tau \left( -\frac{1}{2} e^{-2\tau} \right) \right]_0^t + \int_0^t \left( -\frac{1}{2} e^{-2\tau} \right) \, d\tau

Evaluate this step: [12τe2τ]0t=12te2t\left[ -\frac{1}{2} \tau e^{-2\tau} \right]_0^t = -\frac{1}{2} t e^{-2t} and 0t(12e2τ)dτ=[14e2τ]0t=14(e2t1)\int_0^t \left( -\frac{1}{2} e^{-2\tau} \right) d\tau = \left[ \frac{1}{4} e^{-2\tau} \right]_0^t = \frac{1}{4} \left( e^{-2t} - 1 \right)

Step 3: Combine all parts

Putting everything together, the distance traveled is:

0tτ2e2τdτ=12t2e2t+(te2t+14(1e2t))\int_0^t \tau^2 e^{-2\tau} \, d\tau = -\frac{1}{2} t^2 e^{-2t} + \left( -t e^{-2t} + \frac{1}{4} \left( 1 - e^{-2t} \right) \right)

Thus, the distance traveled during the first tt seconds is:

D(t)=12t2e2tte2t+14(1e2t)\boxed{D(t) = -\frac{1}{2} t^2 e^{-2t} - t e^{-2t} + \frac{1}{4} \left( 1 - e^{-2t} \right)}

Would you like further details or clarification on any part of this process?


Here are five questions related to the concept:

  1. How does integration by parts help in solving velocity integrals?
  2. What is the physical significance of integrating velocity over time?
  3. Can you explain why an exponential decay function appears in many velocity functions?
  4. How do you find the total distance if the velocity function changes direction?
  5. What is the difference between displacement and total distance?

Tip: When solving integrals involving products of polynomials and exponentials, integration by parts is usually an effective technique.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Integration by Parts
Exponential Decay

Formulas

v(t) = t^2 e^{-2t}
Distance = ∫ v(τ) dτ = ∫ τ^2 e^{-2τ} dτ

Theorems

Integration by Parts Theorem

Suitable Grade Level

Grades 11-12, College-level Calculus