Math Problem Statement

Suppose that the temperature at a point (π‘₯,𝑦,𝑧) in space is given by 𝑇(π‘₯,𝑦,𝑧)= 80/ 1+π‘₯^2+2𝑦^2+3𝑧^2 , where 𝑇 is measured in degree Celsius and π‘₯,𝑦,𝑧 meters. In which direction does the temperature increases fastest at the point (1,1,βˆ’2)? What is the maximum rate of increase?

Solution

To determine the direction in which the temperature increases the fastest at the point (1,1,βˆ’2)(1,1,-2) and find the maximum rate of increase, we need to compute the gradient of the temperature function T(x,y,z)T(x, y, z) at that point.

Given: T(x,y,z)=801+x2+2y2+3z2T(x, y, z) = \frac{80}{1 + x^2 + 2y^2 + 3z^2}

Step 1: Calculate the Gradient of T(x,y,z)T(x, y, z)

The gradient of TT, denoted by βˆ‡T\nabla T, gives the direction of the fastest increase of the function, and its magnitude gives the maximum rate of increase.

  1. Compute partial derivatives with respect to xx, yy, and zz.

    Let's rewrite TT as: T(x,y,z)=80β‹…(1+x2+2y2+3z2)βˆ’1T(x, y, z) = 80 \cdot \left(1 + x^2 + 2y^2 + 3z^2\right)^{-1} Using the chain rule, we get: βˆ‚Tβˆ‚x=βˆ’80β‹…(1+x2+2y2+3z2)βˆ’2β‹…2x\frac{\partial T}{\partial x} = -80 \cdot \left(1 + x^2 + 2y^2 + 3z^2\right)^{-2} \cdot 2x βˆ‚Tβˆ‚y=βˆ’80β‹…(1+x2+2y2+3z2)βˆ’2β‹…4y\frac{\partial T}{\partial y} = -80 \cdot \left(1 + x^2 + 2y^2 + 3z^2\right)^{-2} \cdot 4y βˆ‚Tβˆ‚z=βˆ’80β‹…(1+x2+2y2+3z2)βˆ’2β‹…6z\frac{\partial T}{\partial z} = -80 \cdot \left(1 + x^2 + 2y^2 + 3z^2\right)^{-2} \cdot 6z

    So, the gradient is: βˆ‡T=(βˆ’160x(1+x2+2y2+3z2)2,βˆ’320y(1+x2+2y2+3z2)2,βˆ’480z(1+x2+2y2+3z2)2)\nabla T = \left( -\frac{160x}{(1 + x^2 + 2y^2 + 3z^2)^2}, -\frac{320y}{(1 + x^2 + 2y^2 + 3z^2)^2}, -\frac{480z}{(1 + x^2 + 2y^2 + 3z^2)^2} \right)

  2. Evaluate βˆ‡T\nabla T at the point (1,1,βˆ’2)(1, 1, -2).

    Substitute x=1x = 1, y=1y = 1, and z=βˆ’2z = -2 into βˆ‡T\nabla T: 1+(1)2+2(1)2+3(βˆ’2)2=1+1+2+12=161 + (1)^2 + 2(1)^2 + 3(-2)^2 = 1 + 1 + 2 + 12 = 16

    Thus, βˆ‡T(1,1,βˆ’2)=(βˆ’160β‹…1162,βˆ’320β‹…1162,βˆ’480β‹…(βˆ’2)162)\nabla T(1, 1, -2) = \left( -\frac{160 \cdot 1}{16^2}, -\frac{320 \cdot 1}{16^2}, -\frac{480 \cdot (-2)}{16^2} \right) Simplifying, 162=25616^2 = 256, so: βˆ‡T(1,1,βˆ’2)=(βˆ’160256,βˆ’320256,960256)=(βˆ’58,βˆ’54,154)\nabla T(1, 1, -2) = \left( -\frac{160}{256}, -\frac{320}{256}, \frac{960}{256} \right) = \left( -\frac{5}{8}, -\frac{5}{4}, \frac{15}{4} \right)

Step 2: Determine the Direction and Magnitude of the Maximum Rate of Increase

  1. Direction of the fastest temperature increase: This is given by the direction of the gradient vector βˆ‡T(1,1,βˆ’2)=(βˆ’58,βˆ’54,154)\nabla T(1, 1, -2) = \left( -\frac{5}{8}, -\frac{5}{4}, \frac{15}{4} \right).

  2. Maximum rate of increase: This is the magnitude of βˆ‡T(1,1,βˆ’2)\nabla T(1, 1, -2): βˆ₯βˆ‡T(1,1,βˆ’2)βˆ₯=(βˆ’58)2+(βˆ’54)2+(154)2\left\|\nabla T(1, 1, -2)\right\| = \sqrt{\left(-\frac{5}{8}\right)^2 + \left(-\frac{5}{4}\right)^2 + \left(\frac{15}{4}\right)^2} Calculating each term: =2564+2516+22516= \sqrt{\frac{25}{64} + \frac{25}{16} + \frac{225}{16}} Converting 2516\frac{25}{16} to 10064\frac{100}{64} and 22516\frac{225}{16} to 90064\frac{900}{64}: =25+100+90064=102564=10258= \sqrt{\frac{25 + 100 + 900}{64}} = \sqrt{\frac{1025}{64}} = \frac{\sqrt{1025}}{8}

Thus:

  • Direction of fastest increase: (βˆ’58,βˆ’54,154)\left( -\frac{5}{8}, -\frac{5}{4}, \frac{15}{4} \right).
  • Maximum rate of increase: 10258β‰ˆ4.008\frac{\sqrt{1025}}{8} \approx 4.008 degrees Celsius per meter.

Would you like more details or explanations for specific steps?


Further Questions

  1. How would the gradient change if the function T(x,y,z)T(x, y, z) had additional parameters?
  2. How does the rate of change vary if we move in a direction perpendicular to the gradient?
  3. What does the temperature function tell us about the nature of temperature variation in space?
  4. How would the result differ if the point of evaluation were changed?
  5. Can we determine the rate of temperature change along a specific direction (not the gradient)?

Tip

The gradient of a scalar field points in the direction of the maximum rate of increase of the function at any given point.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Gradient
Partial Derivatives
Vector Calculus

Formulas

Gradient formula: βˆ‡T = (βˆ‚T/βˆ‚x, βˆ‚T/βˆ‚y, βˆ‚T/βˆ‚z)
Magnitude of vector formula: |βˆ‡T| = √((βˆ‚T/βˆ‚x)^2 + (βˆ‚T/βˆ‚y)^2 + (βˆ‚T/βˆ‚z)^2)

Theorems

Gradient Theorem for Directional Derivatives

Suitable Grade Level

College-level Calculus