Math Problem Statement

Diferensialkan soal tersebut

Diferensialkan soal tersebut

Solution

To find the derivative of the given function y=tan1(3x219x2)y = \tan^{-1} \left( \frac{3x^2}{1 - 9x^2} \right), we'll proceed step by step.

Step 1: General formula

The derivative of y=tan1(u)y = \tan^{-1}(u) is given by: dydx=11+u2dudx,\frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx}, where uu is a function of xx.

Here, u=3x219x2u = \frac{3x^2}{1 - 9x^2}.

Step 2: Differentiate uu

To differentiate u=3x219x2u = \frac{3x^2}{1 - 9x^2}, we'll use the quotient rule: dudx=vddx(u)uddx(v)v2,\frac{du}{dx} = \frac{v \frac{d}{dx}(u) - u \frac{d}{dx}(v)}{v^2}, where u=3x2u = 3x^2 and v=19x2v = 1 - 9x^2.

Compute derivatives:

ddx(3x2)=6x,ddx(19x2)=18x.\frac{d}{dx}(3x^2) = 6x, \quad \frac{d}{dx}(1 - 9x^2) = -18x.

Substitute these into the quotient rule: dudx=(19x2)(6x)(3x2)(18x)(19x2)2.\frac{du}{dx} = \frac{(1 - 9x^2)(6x) - (3x^2)(-18x)}{(1 - 9x^2)^2}.

Simplify: dudx=6x54x3+54x3(19x2)2.\frac{du}{dx} = \frac{6x - 54x^3 + 54x^3}{(1 - 9x^2)^2}.

Combine terms: dudx=6x(19x2)2.\frac{du}{dx} = \frac{6x}{(1 - 9x^2)^2}.

Step 3: Substitute back into the derivative formula

Now substitute u=3x219x2u = \frac{3x^2}{1 - 9x^2} and dudx=6x(19x2)2\frac{du}{dx} = \frac{6x}{(1 - 9x^2)^2} into the formula: dydx=11+(3x219x2)26x(19x2)2.\frac{dy}{dx} = \frac{1}{1 + \left(\frac{3x^2}{1 - 9x^2}\right)^2} \cdot \frac{6x}{(1 - 9x^2)^2}.

Step 4: Simplify

The term 1+(3x219x2)21 + \left(\frac{3x^2}{1 - 9x^2}\right)^2 becomes: 1+(3x2)2(19x2)2=(19x2)2+9x4(19x2)2.1 + \frac{(3x^2)^2}{(1 - 9x^2)^2} = \frac{(1 - 9x^2)^2 + 9x^4}{(1 - 9x^2)^2}.

Simplify the numerator: (19x2)2+9x4=118x2+81x4+9x4=118x2+90x4.(1 - 9x^2)^2 + 9x^4 = 1 - 18x^2 + 81x^4 + 9x^4 = 1 - 18x^2 + 90x^4.

Thus: 1+(3x219x2)2=118x2+90x4(19x2)2.1 + \left(\frac{3x^2}{1 - 9x^2}\right)^2 = \frac{1 - 18x^2 + 90x^4}{(1 - 9x^2)^2}.

Finally, substitute everything into the derivative: dydx=6x(19x2)2118x2+90x4(19x2)2.\frac{dy}{dx} = \frac{\frac{6x}{(1 - 9x^2)^2}}{\frac{1 - 18x^2 + 90x^4}{(1 - 9x^2)^2}}.

Cancel out (19x2)2(1 - 9x^2)^2: dydx=6x118x2+90x4.\frac{dy}{dx} = \frac{6x}{1 - 18x^2 + 90x^4}.

Final Answer:

dydx=6x118x2+90x4.\frac{dy}{dx} = \frac{6x}{1 - 18x^2 + 90x^4}.

Let me know if you'd like further clarification or details! 😊


5 Related Questions:

  1. How is the derivative of the arctangent function derived?
  2. Can we find the critical points of the function y=tan1(3x219x2)y = \tan^{-1} \left( \frac{3x^2}{1 - 9x^2} \right)?
  3. What happens to dydx\frac{dy}{dx} when xx approaches ±13\pm \frac{1}{3}?
  4. Can you explain how to expand (19x2)2(1 - 9x^2)^2 in more detail?
  5. What are the applications of differentiating inverse trigonometric functions in real-life problems?

Tip:

Always check the domain of the given function, especially for rational and trigonometric expressions, as they can affect the existence of the derivative!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Differentiation
Inverse Trigonometric Functions
Quotient Rule

Formulas

Derivative of arctangent: \( \frac{d}{dx}(\tan^{-1}(u)) = \frac{1}{1+u^2} \cdot \frac{du}{dx} \)
Quotient rule: \( \frac{d}{dx}(\frac{u}{v}) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \)

Theorems

Derivative of inverse trigonometric functions
Quotient Rule

Suitable Grade Level

Grades 11-12