Math Problem Statement

If y = tan⁻¹((cos x - sin x) / (cos x + sin x)), find dy/dx.

Solution

To solve the given problem y=tan1(cosxsinxcosx+sinx)y = \tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right) and find dydx\frac{dy}{dx}, we follow these steps:


Step 1: Let the argument of the inverse tangent be uu:

u=cosxsinxcosx+sinxu = \frac{\cos x - \sin x}{\cos x + \sin x}

Step 2: Use the derivative formula for y=tan1(u)y = \tan^{-1}(u):

dydx=11+u2dudx\frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx}


Step 3: Simplify u2u^2:

u2=(cosxsinxcosx+sinx)2=(cosxsinx)2(cosx+sinx)2u^2 = \left(\frac{\cos x - \sin x}{\cos x + \sin x}\right)^2 = \frac{(\cos x - \sin x)^2}{(\cos x + \sin x)^2} Using the identity (cosxsinx)2=cos2x+sin2x2cosxsinx(\cos x - \sin x)^2 = \cos^2 x + \sin^2 x - 2\cos x \sin x and cos2x+sin2x=1\cos^2 x + \sin^2 x = 1: u2=12cosxsinx(cosx+sinx)2u^2 = \frac{1 - 2\cos x \sin x}{(\cos x + \sin x)^2}


Step 4: Differentiate uu with respect to xx:

Using the quotient rule: dudx=(cosx+sinx)(sinxcosx)(cosxsinx)(sinx+cosx)(cosx+sinx)2\frac{du}{dx} = \frac{(\cos x + \sin x) \cdot (\sin x - \cos x) - (\cos x - \sin x) \cdot (\sin x + \cos x)}{(\cos x + \sin x)^2} Simplify the numerator: (cosx+sinx)(sinxcosx)(cosxsinx)(sinx+cosx)(\cos x + \sin x)(\sin x - \cos x) - (\cos x - \sin x)(\sin x + \cos x) Expanding both terms: =(cosxsinxcos2x+sin2xsinxcosx)(cosxsinx+cos2xsin2xsinxcosx)= (\cos x \sin x - \cos^2 x + \sin^2 x - \sin x \cos x) - (\cos x \sin x + \cos^2 x - \sin^2 x - \sin x \cos x) =2cos2x2sin2x= -2\cos^2 x - 2\sin^2 x Simplify further using cos2x+sin2x=1\cos^2 x + \sin^2 x = 1: dudx=2(cosx+sinx)2\frac{du}{dx} = \frac{-2}{(\cos x + \sin x)^2}


Step 5: Substitute u2u^2 and dudx\frac{du}{dx} into dydx\frac{dy}{dx}:

dydx=11+12cosxsinx(cosx+sinx)22(cosx+sinx)2\frac{dy}{dx} = \frac{1}{1 + \frac{1 - 2\cos x \sin x}{(\cos x + \sin x)^2}} \cdot \frac{-2}{(\cos x + \sin x)^2} Simplify: dydx=2(cosx+sinx)2+(12cosxsinx)=21+2cosxsinx\frac{dy}{dx} = \frac{-2}{(\cos x + \sin x)^2 + (1 - 2\cos x \sin x)} = \frac{-2}{1 + 2\cos x \sin x}


Final Answer:

dydx=21+2cosxsinx\frac{dy}{dx} = \frac{-2}{1 + 2\cos x \sin x}


Let me know if you want detailed clarifications or additional steps! Here are some related questions:

  1. What is the role of the derivative of inverse trigonometric functions in calculus?
  2. How can you simplify trigonometric identities involving sum and difference?
  3. What is the significance of the quotient rule in this context?
  4. How does the identity cos2x+sin2x=1\cos^2 x + \sin^2 x = 1 simplify expressions?
  5. Can the result be verified using numerical values for xx?

Tip: When dealing with trigonometric derivatives, always simplify intermediate expressions to avoid mistakes!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Inverse Trigonometric Functions
Quotient Rule
Trigonometric Identities

Formulas

y = tan⁻¹(u) → dy/dx = 1 / (1 + u²) * du/dx
Quotient Rule: (u/v)' = (v*u' - u*v') / v²
Trigonometric Identity: cos²x + sin²x = 1

Theorems

Derivative of Inverse Trigonometric Functions
Pythagorean Identity

Suitable Grade Level

Grade 11-12