Math Problem Statement

Differentiate the function F(t) = (2 - 3 cos(t)) / t^2

Solution

To differentiate the function F(t)=23costt2F(t) = \frac{2 - 3 \cos t}{t^2}, you can use the quotient rule. The quotient rule is:

ddt(uv)=vuuvv2\frac{d}{dt}\left(\frac{u}{v}\right) = \frac{v \cdot u' - u \cdot v'}{v^2}

For the function F(t)=23costt2F(t) = \frac{2 - 3 \cos t}{t^2}, let:

  • u=23costu = 2 - 3 \cos t so u=3sintu' = 3 \sin t
  • v=t2v = t^2 so v=2tv' = 2t

Applying the quotient rule:

F(t)=t2(3sint)(23cost)(2t)t4F'(t) = \frac{t^2 \cdot (3 \sin t) - (2 - 3 \cos t) \cdot (2t)}{t^4}

Simplify the expression:

F(t)=3t2sint4t+6tcostt4F'(t) = \frac{3t^2 \sin t - 4t + 6t \cos t}{t^4}

Finally, divide each term by t4t^4:

F(t)=3tsint4+6costt3F'(t) = \frac{3t \sin t - 4 + 6 \cos t}{t^3}

This gives the derivative of the function.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Differentiation
Quotient Rule

Formulas

Quotient rule: d/dt(u/v) = (v * u' - u * v') / v^2

Theorems

Quotient Rule

Suitable Grade Level

Grades 11-12