Math Problem Statement

using chain rule 1)y=[x+3+(x-5)^3]^-½ 2)(x²/10-3x)^⅓ 3) y= 3/(16+x^4)^½ . Show detailed solution

Solution

Let's solve each of the given problems step by step using the chain rule for derivatives.

Problem 1:

y=[x+3+(x5)3]12y = \left[x + 3 + (x - 5)^3 \right]^{-\frac{1}{2}}

Step 1: Identify the outer function and inner function

The outer function is the power function u12u^{-\frac{1}{2}} where u=x+3+(x5)3u = x + 3 + (x - 5)^3, and the inner function is the expression inside the parentheses.

Step 2: Differentiate using the chain rule

The chain rule states that if y=f(u)y = f(u) and u=g(x)u = g(x), then:

dydx=dfdududx\frac{dy}{dx} = \frac{df}{du} \cdot \frac{du}{dx}

  1. Outer Function Derivative: ddu(u12)=12u32\frac{d}{du} \left(u^{-\frac{1}{2}}\right) = -\frac{1}{2} u^{-\frac{3}{2}}
  2. Inner Function Derivative: u=x+3+(x5)3u = x + 3 + (x - 5)^3 Differentiate each term: ddx(x+3+(x5)3)=1+3(x5)2\frac{d}{dx}\left(x + 3 + (x - 5)^3\right) = 1 + 3(x - 5)^2

Step 3: Apply the chain rule

Now, applying the chain rule:

dydx=12(x+3+(x5)3)32(1+3(x5)2)\frac{dy}{dx} = -\frac{1}{2} \left( x + 3 + (x - 5)^3 \right)^{-\frac{3}{2}} \cdot \left( 1 + 3(x - 5)^2 \right)

Problem 2:

y=(x2103x)13y = \left(\frac{x^2}{10} - 3x\right)^{\frac{1}{3}}

Step 1: Identify the outer and inner functions

The outer function is u13u^{\frac{1}{3}}, where u=x2103xu = \frac{x^2}{10} - 3x.

Step 2: Differentiate using the chain rule

  1. Outer Function Derivative: ddu(u13)=13u23\frac{d}{du} \left( u^{\frac{1}{3}} \right) = \frac{1}{3} u^{-\frac{2}{3}}
  2. Inner Function Derivative: u=x2103xu = \frac{x^2}{10} - 3x Differentiate: ddx(x2103x)=2x103=x53\frac{d}{dx} \left( \frac{x^2}{10} - 3x \right) = \frac{2x}{10} - 3 = \frac{x}{5} - 3

Step 3: Apply the chain rule

dydx=13(x2103x)23(x53)\frac{dy}{dx} = \frac{1}{3} \left( \frac{x^2}{10} - 3x \right)^{-\frac{2}{3}} \cdot \left( \frac{x}{5} - 3 \right)

Problem 3:

y=316+x4y = \frac{3}{\sqrt{16 + x^4}}

Step 1: Identify the outer and inner functions

The outer function is 3u12\frac{3}{u^{\frac{1}{2}}}, where u=16+x4u = 16 + x^4.

Step 2: Differentiate using the chain rule

  1. Outer Function Derivative: ddu(3u12)=32u32\frac{d}{du} \left( \frac{3}{u^{\frac{1}{2}}} \right) = -\frac{3}{2} u^{-\frac{3}{2}}
  2. Inner Function Derivative: u=16+x4u = 16 + x^4 Differentiate: ddx(16+x4)=4x3\frac{d}{dx} \left( 16 + x^4 \right) = 4x^3

Step 3: Apply the chain rule

dydx=32(16+x4)324x3\frac{dy}{dx} = -\frac{3}{2} \left( 16 + x^4 \right)^{-\frac{3}{2}} \cdot 4x^3 Simplifying: dydx=6x3(16+x4)32\frac{dy}{dx} = -\frac{6x^3}{\left( 16 + x^4 \right)^{\frac{3}{2}}}


Summary of Derivatives:

  1. dydx=12(x+3+(x5)3)32(1+3(x5)2)\frac{dy}{dx} = -\frac{1}{2} \left(x + 3 + (x - 5)^3 \right)^{-\frac{3}{2}} \left( 1 + 3(x - 5)^2 \right)
  2. dydx=13(x2103x)23(x53)\frac{dy}{dx} = \frac{1}{3} \left( \frac{x^2}{10} - 3x \right)^{-\frac{2}{3}} \left( \frac{x}{5} - 3 \right)
  3. dydx=6x3(16+x4)32\frac{dy}{dx} = -\frac{6x^3}{\left( 16 + x^4 \right)^{\frac{3}{2}}}

Do you want further explanation on any of the steps, or is there a specific part you want more details on?

Here are some related questions you can explore next:

  1. What happens when the outer function has more complex powers, like unu^n where nn is not a simple fraction?
  2. Can the chain rule be used with multiple layers of functions, and how does it work in those cases?
  3. How do you differentiate functions that have compositions of trigonometric or exponential functions?
  4. How would you apply the chain rule to higher-order derivatives?
  5. How do you use the chain rule in multivariable calculus, like partial derivatives?

Tip: When applying the chain rule, always carefully identify the inner and outer functions. Break the problem down into parts for easier differentiation!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Chain Rule
Power Rule

Formulas

dy/dx = f'(u) * u'(x) for chain rule
dy/dx = n * u^(n-1) for power rule

Theorems

Chain Rule
Power Rule

Suitable Grade Level

Grades 11-12