Math Problem Statement

Solving

Solve the given expressions using the difference of squares formula as shown in the provided image.

Solution

The image contains a set of problems illustrating the application of the difference of squares formula: a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b). Let's solve each expression:

1. 51249251^2 - 49^2

Using a=51a = 51 and b=49b = 49: 512492=(5149)(51+49)=2100=20051^2 - 49^2 = (51 - 49)(51 + 49) = 2 \cdot 100 = 200


2. 96242296^2 - 42^2

Using a=96a = 96 and b=42b = 42: 962422=(9642)(96+42)=5413896^2 - 42^2 = (96 - 42)(96 + 42) = 54 \cdot 138 Calculate: 54138=745254 \cdot 138 = 7452


3. 23221722232^2 - 172^2

Using a=232a = 232 and b=172b = 172: 23221722=(232172)(232+172)=60404232^2 - 172^2 = (232 - 172)(232 + 172) = 60 \cdot 404 Calculate: 60404=2424060 \cdot 404 = 24240


4. (7.9)2(2.1)2(7.9)^2 - (2.1)^2

Using a=7.9a = 7.9 and b=2.1b = 2.1: (7.9)2(2.1)2=(7.92.1)(7.9+2.1)=5.810.0(7.9)^2 - (2.1)^2 = (7.9 - 2.1)(7.9 + 2.1) = 5.8 \cdot 10.0 Calculate: 5.810.0=58.05.8 \cdot 10.0 = 58.0


5. (9.4)2(0.6)2(9.4)^2 - (0.6)^2

Using a=9.4a = 9.4 and b=0.6b = 0.6: [ (9.4)^2 - (0.6)^2 = (9.4 - 0.6)(9.4 + 0.6) = 8.8 \cdot 10.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Difference of Squares

Formulas

a^2 - b^2 = (a - b)(a + b)

Theorems

Difference of Squares Theorem

Suitable Grade Level

Grades 8-10