Math Problem Statement

For the given transformation T decide if it is linear. If so, construct the matrix representation of T in the standard bases of the vector spaces involved.

Solution

Let's analyze the linearity of the given transformations TT and, if they are linear, construct the matrix representations in the standard bases of the vector spaces involved.

Part (a): Transformation T:P2P3T: P^2 \to P^3

This transformation is defined by: T(p(x))=xp(x)+1T(p(x)) = xp(x) + 1 where p(x)p(x) is a polynomial of degree at most 2.

Linearity Check:

For TT to be linear, it must satisfy the following properties:

  1. Additivity: T(p(x)+q(x))=T(p(x))+T(q(x))T(p(x) + q(x)) = T(p(x)) + T(q(x))
  2. Homogeneity: T(cp(x))=cT(p(x))T(c \cdot p(x)) = c \cdot T(p(x)) for any scalar cc.

1. Additivity: Let's consider two polynomials p(x)p(x) and q(x)q(x). T(p(x)+q(x))=x(p(x)+q(x))+1=xp(x)+xq(x)+1T(p(x) + q(x)) = x(p(x) + q(x)) + 1 = xp(x) + xq(x) + 1 T(p(x))+T(q(x))=(xp(x)+1)+(xq(x)+1)=xp(x)+xq(x)+2T(p(x)) + T(q(x)) = (xp(x) + 1) + (xq(x) + 1) = xp(x) + xq(x) + 2 Since T(p(x)+q(x))T(p(x))+T(q(x))T(p(x) + q(x)) \neq T(p(x)) + T(q(x)), TT is not additive and therefore not linear.

Since TT is not linear, we do not construct a matrix representation for it.

Part (b): Transformation T:R3R2T: \mathbb{R}^3 \to \mathbb{R}^2

This transformation is defined by: T((xyz))=(2x+y3y4z)T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} 2x + y \\ 3y - 4z \end{pmatrix}

Linearity Check:

Again, we check additivity and homogeneity.

1. Additivity: For vectors u=(x1y1z1)\mathbf{u} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} and v=(x2y2z2)\mathbf{v} = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}: T(u+v)=T((x1+x2y1+y2z1+z2))=(2(x1+x2)+(y1+y2)3(y1+y2)4(z1+z2))T(\mathbf{u} + \mathbf{v}) = T\left(\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{pmatrix}\right) = \begin{pmatrix} 2(x_1 + x_2) + (y_1 + y_2) \\ 3(y_1 + y_2) - 4(z_1 + z_2) \end{pmatrix} =(2x1+2x2+y1+y23y1+3y24z14z2)=(2x1+y13y14z1)+(2x2+y23y24z2)=T(u)+T(v)= \begin{pmatrix} 2x_1 + 2x_2 + y_1 + y_2 \\ 3y_1 + 3y_2 - 4z_1 - 4z_2 \end{pmatrix} = \begin{pmatrix} 2x_1 + y_1 \\ 3y_1 - 4z_1 \end{pmatrix} + \begin{pmatrix} 2x_2 + y_2 \\ 3y_2 - 4z_2 \end{pmatrix} = T(\mathbf{u}) + T(\mathbf{v})

2. Homogeneity: For a scalar cc: T(cu)=T((cxcycz))=(2cx+cy3cy4cz)=c(2x+y3y4z)=cT(u)T(c \mathbf{u}) = T\left(\begin{pmatrix} c x \\ c y \\ c z \end{pmatrix}\right) = \begin{pmatrix} 2c x + c y \\ 3c y - 4c z \end{pmatrix} = c \begin{pmatrix} 2x + y \\ 3y - 4z \end{pmatrix} = c T(\mathbf{u})

Since both conditions are satisfied, TT is a linear transformation.

Matrix Representation of TT:

To find the matrix representation of TT, we apply TT to the standard basis vectors of R3\mathbb{R}^3:

  • T((100))=(2(1)+03(0)4(0))=(20)T\left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} 2(1) + 0 \\ 3(0) - 4(0) \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}
  • T((010))=(2(0)+1(1)3(1)4(0))=(13)T\left(\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} 2(0) + 1(1) \\ 3(1) - 4(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}
  • T((001))=(2(0)+03(0)4(1))=(04)T\left(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} 2(0) + 0 \\ 3(0) - 4(1) \end{pmatrix} = \begin{pmatrix} 0 \\ -4 \end{pmatrix}

Thus, the matrix representation of TT is: [T]=(210034)[T] = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -4 \end{pmatrix}


Would you like any further details on these transformations or have any additional questions?

Related Questions:

  1. What are the properties that define a linear transformation?
  2. How do you determine if a given transformation is bijective?
  3. What is the relationship between the matrix of a linear transformation and its effect on vector spaces?
  4. How do you find the inverse of a linear transformation?
  5. Can you determine the image (range) and kernel (null space) of a linear transformation from its matrix?

Tip: When determining the linearity of a transformation, always check both additivity and homogeneity.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Transformation
Matrix Representation
Vector Spaces

Formulas

-

Theorems

-

Suitable Grade Level

Undergraduate