Math Problem Statement

The four concentric forces act on the post. Determine the resultant force and its direction, measured counterclockwise from the positive x axis.

The four concentric forces act on the post. Determine the resultant force and its direction, measured counterclockwise from the positive x axis.

Solution

To determine the resultant force and its direction from the positive x-axis, we will resolve each force into its x and y components and then find the total force components in each direction.

Given:

  1. F1=300NF_1 = 300 \, \text{N} at 3030^\circ above the positive x-axis.
  2. F2=600NF_2 = 600 \, \text{N} along the positive y-axis.
  3. F3=450NF_3 = 450 \, \text{N} at 1212^\circ below the negative x-axis.
  4. F4=250NF_4 = 250 \, \text{N} at 6060^\circ below the negative y-axis.

Step 1: Resolve each force into x and y components.

Force F1F_1:

  • F1x=F1cos(30)=300cos(30)F_{1x} = F_1 \cos(30^\circ) = 300 \cos(30^\circ)
  • F1y=F1sin(30)=300sin(30)F_{1y} = F_1 \sin(30^\circ) = 300 \sin(30^\circ)

Force F2F_2:

  • F2x=0F_{2x} = 0 (no horizontal component)
  • F2y=600NF_{2y} = 600 \, \text{N}

Force F3F_3:

  • F3x=F3cos(12)=450cos(12)F_{3x} = -F_3 \cos(12^\circ) = -450 \cos(12^\circ)
  • F3y=F3sin(12)=450sin(12)F_{3y} = -F_3 \sin(12^\circ) = -450 \sin(12^\circ)

Force F4F_4:

  • F4x=F4sin(60)=250sin(60)F_{4x} = -F_4 \sin(60^\circ) = -250 \sin(60^\circ)
  • F4y=F4cos(60)=250cos(60)F_{4y} = -F_4 \cos(60^\circ) = -250 \cos(60^\circ)

Step 2: Calculate the total x and y components.

FRx=F1x+F2x+F3x+F4xF_{Rx} = F_{1x} + F_{2x} + F_{3x} + F_{4x} FRy=F1y+F2y+F3y+F4yF_{Ry} = F_{1y} + F_{2y} + F_{3y} + F_{4y}

Step 3: Determine the magnitude of the resultant force.

FR=FRx2+FRy2F_R = \sqrt{F_{Rx}^2 + F_{Ry}^2}

Step 4: Find the direction of the resultant force.

The angle θ\theta is given by: θ=tan1(FRyFRx)\theta = \tan^{-1}\left(\frac{F_{Ry}}{F_{Rx}}\right)

Let's proceed with calculating these values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Components
Resultant Force
Trigonometry

Formulas

F_{Rx} = F_{1x} + F_{2x} + F_{3x} + F_{4x}
F_{Ry} = F_{1y} + F_{2y} + F_{3y} + F_{4y}
F_R = sqrt(F_{Rx}^2 + F_{Ry}^2)
θ = tan^{-1}(F_{Ry} / F_{Rx})

Theorems

Pythagoras' Theorem
Inverse Tangent Function

Suitable Grade Level

Undergraduate Physics/Engineering