Math Problem Statement
Four forces are working against each other (on the same plane, so you don't need to consider three dimensional space). Two of the forces, of magnitudes 70 N and 50 N, act in opposite directions to each other. The other two forces, of magnitudes 20 N and 60 N, act in opposite directions to each other as well. The 20 N force is at an angle of 40° to the 50 N force and the 60 N is at an angle of 40 to the 70 N. Find the resultant force and the equilibrant force.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Addition
Trigonometry
Formulas
F_x = 70 - 50 - 20 * cos(40°) + 60 * cos(40°)
F_y = 60 * sin(40°) - 20 * sin(40°)
R = sqrt(F_x^2 + F_y^2)
θ = tan^(-1)(F_y / F_x)
θ_equilibrant = θ + 180°
Theorems
Pythagorean Theorem
Trigonometric Functions
Suitable Grade Level
Grades 11-12
Related Recommendation
Vector Addition: Calculating Resultant Force with Two Equal Forces at 40°
Resultant Force Calculation for Three Forces Using Component Method
Find Resultant Force and Angle for Forces Acting on an Object
Calculate Magnitude of Resultant Force and Angle with X-Axis
Calculate the Resultant of Four Forces on a Body