Math Problem Statement
Solution
The problem asks to determine the real zeros, their multiplicities, and to sketch the graph of the given polynomial function:
Here are the steps to solve it:
1. Find the real zeros of the polynomial:
Factor the polynomial to find its zeros.
Now, factor the quadratic part :
Thus, the factored form of is:
2. Determine the real zeros:
From the factored form , the real zeros are:
- (with multiplicity 2, since gives a double root),
- (with multiplicity 1),
- (with multiplicity 1).
3. Check the graphs provided:
We now need to match this to the correct graph by looking for:
- A double root at (which means the graph will touch the x-axis at but not cross it),
- Single roots at and (the graph will cross the x-axis at these points).
The graph that matches these criteria is Option A. It shows a touch at (indicating multiplicity 2) and crossings at and .
Answer:
- Real Zeros: (multiplicity 2), (multiplicity 1), (multiplicity 1).
- Correct Graph: Option A.
Would you like further details or explanations on any part of this solution?
Here are 5 related questions you might want to explore:
- How does the multiplicity of a zero affect the shape of the graph at that point?
- What are the steps for factoring higher-degree polynomials?
- Can a polynomial of degree 4 have more than 4 real zeros?
- How can you determine end behavior of a polynomial from its leading term?
- How does the sign of the leading coefficient affect the graph's direction?
Tip: When a polynomial has a zero with an even multiplicity, the graph "bounces" off the x-axis at that zero instead of crossing it.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Polynomials
Factoring
Zeros of Polynomials
Multiplicity of Roots
Formulas
Factored Form of Polynomial: f(x) = x^2(2x - 3)(x + 2)
Theorems
Fundamental Theorem of Algebra
Suitable Grade Level
Grades 10-12
Related Recommendation
Finding Zeros, Their Multiplicity, and Graph Effects for f(x) = x(3x-2)²(x+9)⁵
Find the Zeros of the Polynomial f(x) = 2x^5 + 9x^4 + 7x^3 and State Their Multiplicities
Identifying Zeroes and Multiplicities for the Polynomial f(x) = 3x^6 + 30x^5 + 75x^4
Find Zeros and Multiplicity of x^3 + 6x^2 - 4x - 24 Polynomial Function
Find Real Zeros of the Polynomial f(x) = 3x^4 - x^3 - 6x^2