Math Problem Statement

Berechnen Sie die Determinante der folgenden Matrizen: A, B, C, D, E (D^{-1}), und F.

Solution

To solve Aufgabe 13, I will calculate the determinant for each matrix provided:

Aufgabe 13 - Determinante

The task requires finding the determinant of each of the matrices:

  1. Matrix A A=(4142)A = \begin{pmatrix} 4 & 1 \\ -4 & 2 \end{pmatrix} Determinant of a 2×22 \times 2 matrix (abcd)\begin{pmatrix} a & b \\ c & d \end{pmatrix} is given by det(A)=adbc\det(A) = ad - bc.

  2. Matrix B B=(14101082016)B = \begin{pmatrix} 1 & -4 & -10 \\ 10 & -8 & 2 \\ 0 & -1 & 6 \end{pmatrix} For 3×33 \times 3 matrices, the determinant can be calculated using cofactor expansion.

  3. Matrix C C=(71101102106)C = \begin{pmatrix} -7 & 1 & -10 \\ 1 & 10 & 2 \\ 1 & 0 & 6 \end{pmatrix}

  4. Matrix D D=(308771410110821016)D = \begin{pmatrix} -3 & 0 & -8 & 7 \\ -7 & 1 & -4 & -10 \\ 1 & 10 & 8 & 2 \\ 1 & 0 & 1 & 6 \end{pmatrix} This is a 4×44 \times 4 matrix, so the determinant will be computed using cofactor expansion or other methods suitable for larger matrices.

  5. Matrix E E=D1E = D^{-1} Since matrix EE is the inverse of DD, the determinant of EE is the reciprocal of the determinant of DD: det(E)=1det(D)\det(E) = \frac{1}{\det(D)}, provided det(D)0\det(D) \neq 0.

  6. Matrix F F=(308771410110821016)F = \begin{pmatrix} 3 & 0 & 8 & -7 \\ 7 & -1 & 4 & 10 \\ -1 & -10 & 8 & -2 \\ -1 & 0 & 1 & -6 \end{pmatrix} Similar to DD, the determinant of this 4×44 \times 4 matrix can be found using cofactor expansion.

I will now calculate each determinant.import numpy as np

Defining each matrix based on the problem

Matrix A (2x2)

A = np.array([[4, 1], [-4, 2]])

Matrix B (3x3)

B = np.array([[1, -4, -10], [10, -8, 2], [0, -1, 6]])

Matrix C (3x3)

C = np.array([[-7, 1, -10], [1, 10, 2], [1, 0, 6]])

Matrix D (4x4)

D = np.array([[-3, 0, -8, 7], [-7, 1, -4, -10], [1, 10, 8, 2], [1, 0, 1, 6]])

Matrix F (4x4)

F = np.array([[3, 0, 8, -7], [7, -1, 4, 10], [-1, -10, 8, -2], [-1, 0, 1, -6]])

Calculating determinants

det_A = np.linalg.det(A) det_B = np.linalg.det(B) det_C = np.linalg.det(C) det_D = np.linalg.det(D) det_E = 1 / det_D if det_D != 0 else None # Inverse determinant if D is non-singular det_F = np.linalg.det(F)

det_A, det_B, det_C, det_D, det_E, det_F(12.0, 293.99999999999994, -323.9999999999999, 2194.9999999999986, 0.00045558086560364494, 989.0000000000003)(12.0, 293.99999999999994, -323.9999999999999, 2194.9999999999986, 0.00045558086560364494, 989.0000000000003)successHere are the determinants for each matrix:

  1. Determinant of A: det(A)=12\det(A) = 12
  2. Determinant of B: det(B)=294\det(B) = 294
  3. Determinant of C: det(C)=324\det(C) = -324
  4. Determinant of D: det(D)=2195\det(D) = 2195
  5. Determinant of E (inverse of D): det(E)=0.000456\det(E) = 0.000456 (approximately, as det(E)=1det(D)\det(E) = \frac{1}{\det(D)})
  6. Determinant of F: det(F)=989\det(F) = 989

Would you like further details on any specific calculation, or do you have any questions?

Further Questions:

  1. How are determinants used to find the inverse of a matrix?
  2. What does a zero determinant signify about a matrix?
  3. How can cofactor expansion be applied to calculate determinants of larger matrices?
  4. What are some properties of determinants in matrix multiplication?
  5. How does determinant scaling work when a matrix is multiplied by a scalar?

Tip:

For a matrix to be invertible, its determinant must be non-zero.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Determinants
Matrix Algebra
Inverse Matrix

Formulas

Determinant of a 2x2 matrix: det(A) = ad - bc
Cofactor expansion for 3x3 and 4x4 matrices
Determinant of inverse matrix: det(A^{-1}) = 1/det(A)

Theorems

Determinant properties
Inverse matrix determinant property

Suitable Grade Level

Grades 11-12 (or Undergraduate level)