Math Problem Statement

\det(A - \lambda I) = (5 - \lambda) \left( (-2 - \lambda)(5 - \lambda) - 3(-4) \right) + 3 \left( 4(5 - \lambda) - 3(4) \right) + (-3) \left( 4(-4) - (-2 - \lambda)(4) \right)

Solution

You have the determinant of the matrix AλIA - \lambda I given as a polynomial expression. Let's break it down step by step to better understand it and simplify the equation.

The expression is:

det(AλI)=(5λ)((2λ)(5λ)3(4))+3(4(5λ)3(4))+(3)(4(4)(2λ)(4))\det(A - \lambda I) = (5 - \lambda) \left( (-2 - \lambda)(5 - \lambda) - 3(-4) \right) + 3 \left( 4(5 - \lambda) - 3(4) \right) + (-3) \left( 4(-4) - (-2 - \lambda)(4) \right)

This looks like it's from a 3x3 matrix, where you are expanding the determinant using cofactor expansion along the first row.

Let's simplify each part of the expression one by one.

1. First term: (5λ)((2λ)(5λ)3(4))(5 - \lambda) \left( (-2 - \lambda)(5 - \lambda) - 3(-4) \right)

  • (2λ)(5λ)=2(5λ)λ(5λ)=10+2λ5λ+λ2=λ23λ10(-2 - \lambda)(5 - \lambda) = -2(5 - \lambda) - \lambda(5 - \lambda) = -10 + 2\lambda - 5\lambda + \lambda^2 = \lambda^2 - 3\lambda - 10
  • 3(4)=123(-4) = -12
  • So, the inside of the parentheses becomes: (λ23λ10)(12)=λ23λ+2(\lambda^2 - 3\lambda - 10) - (-12) = \lambda^2 - 3\lambda + 2
  • Now, multiply by (5λ)(5 - \lambda): (5λ)(λ23λ+2)=5(λ23λ+2)λ(λ23λ+2)(5 - \lambda)(\lambda^2 - 3\lambda + 2) = 5(\lambda^2 - 3\lambda + 2) - \lambda(\lambda^2 - 3\lambda + 2) =5λ215λ+10λ3+3λ22λ= 5\lambda^2 - 15\lambda + 10 - \lambda^3 + 3\lambda^2 - 2\lambda =λ3+8λ217λ+10= -\lambda^3 + 8\lambda^2 - 17\lambda + 10

2. Second term: 3(4(5λ)3(4))3 \left( 4(5 - \lambda) - 3(4) \right)

  • 4(5λ)=204λ4(5 - \lambda) = 20 - 4\lambda
  • 3(4)=123(4) = 12
  • So, inside the parentheses becomes: (204λ)12=84λ(20 - 4\lambda) - 12 = 8 - 4\lambda
  • Now, multiply by 33: 3(84λ)=2412λ3(8 - 4\lambda) = 24 - 12\lambda

3. Third term: (3)(4(4)(2λ)(4))(-3) \left( 4(-4) - (-2 - \lambda)(4) \right)

  • 4(4)=164(-4) = -16
  • (2λ)(4)=84λ(-2 - \lambda)(4) = -8 - 4\lambda
  • So, inside the parentheses becomes: (16)(84λ)=16+8+4λ=8+4λ(-16) - (-8 - 4\lambda) = -16 + 8 + 4\lambda = -8 + 4\lambda
  • Now, multiply by 3-3: 3(8+4λ)=2412λ-3(-8 + 4\lambda) = 24 - 12\lambda

Combine all terms:

Now let's put everything together:

det(AλI)=λ3+8λ217λ+10+2412λ+2412λ\det(A - \lambda I) = -\lambda^3 + 8\lambda^2 - 17\lambda + 10 + 24 - 12\lambda + 24 - 12\lambda =λ3+8λ241λ+58= -\lambda^3 + 8\lambda^2 - 41\lambda + 58

Thus, the determinant of AλIA - \lambda I is:

λ3+8λ241λ+58\boxed{-\lambda^3 + 8\lambda^2 - 41\lambda + 58}


Would you like a more detailed explanation of any step? Or perhaps help with finding the eigenvalues or solving this determinant for λ\lambda?

Further Questions:

  1. How do we use this characteristic polynomial to find the eigenvalues of matrix AA?
  2. What is the relation between the determinant and the eigenvalues of a matrix?
  3. Can you show the steps to solve a cubic equation like this for λ\lambda?
  4. How would you handle higher-degree determinants using similar methods?
  5. How does the cofactor expansion method apply to other matrices like 4x4 matrices?

Tip:

If you want to check your work, consider using a numerical solver for the cubic equation or a symbolic math tool to confirm the roots of the determinant expression.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Determinants
Matrix Operations
Cofactor Expansion
Polynomials

Formulas

Determinant of a 3x3 matrix using cofactor expansion
Polynomials expansion

Theorems

Cofactor Expansion Theorem

Suitable Grade Level

Grades 10-12