Math Problem Statement

If det [[a, b], [c, d]] = -3, what is det [[a+c, b+d], [c-2a, d-2b]]?

Solution

Let's analyze and solve this step by step.

The given problem starts with:

  • det[abcd]=3\text{det} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = -3.

We are tasked to find: det[a+cb+dc2ad2b].\text{det} \begin{bmatrix} a + c & b + d \\ c - 2a & d - 2b \end{bmatrix}.


Step 1: Recall the determinant formula

The determinant of a 2×22 \times 2 matrix [pqrs]\begin{bmatrix} p & q \\ r & s \end{bmatrix} is given by: det=psqr.\text{det} = ps - qr.

So for the matrix [a+cb+dc2ad2b]\begin{bmatrix} a + c & b + d \\ c - 2a & d - 2b \end{bmatrix}, the determinant is: det=(a+c)(d2b)(b+d)(c2a).\text{det} = (a + c)(d - 2b) - (b + d)(c - 2a).


Step 2: Expand the determinant

  1. Expand the first term (a+c)(d2b)(a + c)(d - 2b): (a+c)(d2b)=ad2ab+cd2cb.(a + c)(d - 2b) = ad - 2ab + cd - 2cb.

  2. Expand the second term (b+d)(c2a)(b + d)(c - 2a): (b+d)(c2a)=bc2ab+dc2ad.(b + d)(c - 2a) = bc - 2ab + dc - 2ad.

Thus, the determinant becomes: det=(ad2ab+cd2cb)(bc2ab+dc2ad).\text{det} = (ad - 2ab + cd - 2cb) - (bc - 2ab + dc - 2ad).


Step 3: Combine like terms

Group the terms systematically:

  1. Coefficients of adad: ad(2ad)=3adad - (-2ad) = 3ad.
  2. Coefficients of abab: 2ab(2ab)=0-2ab - (-2ab) = 0.
  3. Coefficients of cdcd: cddc=0cd - dc = 0.
  4. Coefficients of bcbc: 2cbbc=3bc-2cb - bc = -3bc.

The determinant simplifies to: det=3ad3bc.\text{det} = 3ad - 3bc.


Step 4: Substitute the original determinant value

From the original matrix [abcd]\begin{bmatrix} a & b \\ c & d \end{bmatrix}, we know: det=adbc=3.\text{det} = ad - bc = -3.

Substitute adbc=3ad - bc = -3 into the simplified determinant expression: det=3(adbc)=3(3)=9.\text{det} = 3(ad - bc) = 3(-3) = -9.


Final Answer:

det[a+cb+dc2ad2b]=9.\text{det} \begin{bmatrix} a + c & b + d \\ c - 2a & d - 2b \end{bmatrix} = -9.

Would you like a more detailed explanation, or do you have any questions?


Related Questions:

  1. How do you compute determinants for larger matrices?
  2. What are properties of determinants that simplify calculations?
  3. How does the determinant change when rows or columns are scaled or swapped?
  4. Can you explain the geometric interpretation of a determinant?
  5. What is the relationship between the determinant and matrix invertibility?

Tip:

When simplifying expressions with determinants, always look for opportunities to factor or group terms related to the original determinant for efficiency.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Determinants
Matrix Operations

Formulas

Determinant of a 2x2 matrix: det([[p, q], [r, s]]) = ps - qr

Theorems

Properties of determinants: Linearity and its dependence on rows/columns

Suitable Grade Level

Undergraduate (Introductory Linear Algebra)