Math Problem Statement

Find the derivative of the vector function r(t) = t a × (b + tc), where a = <2, -1, 2>, b = <-2, 3, -5>, and c = <-2, 5, 4>.

Solution

The problem asks for the derivative of the vector function r(t)\mathbf{r}(t), defined as:

r(t)=ta×(b+tc),\mathbf{r}(t) = t\mathbf{a} \times (\mathbf{b} + t\mathbf{c}),

where:

  • a=2,1,2\mathbf{a} = \langle 2, -1, 2 \rangle,
  • b=2,3,5\mathbf{b} = \langle -2, 3, -5 \rangle,
  • c=2,5,4\mathbf{c} = \langle -2, 5, 4 \rangle.

The cross product in this function involves the time-dependent term tat\mathbf{a} and the sum (b+tc)(\mathbf{b} + t\mathbf{c}).

Step-by-step approach:

  1. Rewrite the vector function:

    r(t)=ta×(b+tc)=ta×b+t2a×c.\mathbf{r}(t) = t\mathbf{a} \times (\mathbf{b} + t\mathbf{c}) = t\mathbf{a} \times \mathbf{b} + t^2 \mathbf{a} \times \mathbf{c}.

    This expands into two parts:

    • ta×bt\mathbf{a} \times \mathbf{b},
    • t2a×ct^2 \mathbf{a} \times \mathbf{c}.
  2. Calculate the cross products:

    • a×b=2,1,2×2,3,5\mathbf{a} \times \mathbf{b} = \langle 2, -1, 2 \rangle \times \langle -2, 3, -5 \rangle,
    • a×c=2,1,2×2,5,4\mathbf{a} \times \mathbf{c} = \langle 2, -1, 2 \rangle \times \langle -2, 5, 4 \rangle.

    Using the determinant method for the cross product:

    a×b=i^j^k^212235=i^(1(5)23)j^(2(5)2(2))+k^(23(1)(2)),\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 2 \\ -2 & 3 & -5 \end{vmatrix} = \hat{i}( -1 \cdot (-5) - 2 \cdot 3 ) - \hat{j}( 2 \cdot (-5) - 2 \cdot (-2) ) + \hat{k}( 2 \cdot 3 - (-1) \cdot (-2) ),

    Simplifying this:

    a×b=i^(56)j^(10+4)+k^(62)=1,6,4.\mathbf{a} \times \mathbf{b} = \hat{i}(5 - 6) - \hat{j}(-10 + 4) + \hat{k}(6 - 2) = \langle -1, 6, 4 \rangle.

    Similarly, for a×c\mathbf{a} \times \mathbf{c}:

    a×c=i^j^k^212254=i^(1425)j^(242(2))+k^(25(1)(2)),\mathbf{a} \times \mathbf{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 2 \\ -2 & 5 & 4 \end{vmatrix} = \hat{i}( -1 \cdot 4 - 2 \cdot 5 ) - \hat{j}( 2 \cdot 4 - 2 \cdot (-2) ) + \hat{k}( 2 \cdot 5 - (-1) \cdot (-2) ),

    Simplifying this:

    a×c=i^(410)j^(8+4)+k^(102)=14,12,8.\mathbf{a} \times \mathbf{c} = \hat{i}(-4 - 10) - \hat{j}(8 + 4) + \hat{k}(10 - 2) = \langle -14, -12, 8 \rangle.

  3. Substitute into the original expression:

    r(t)=t1,6,4+t214,12,8.\mathbf{r}(t) = t \langle -1, 6, 4 \rangle + t^2 \langle -14, -12, 8 \rangle.

    Simplifying:

    r(t)=t,6t,4t+14t2,12t2,8t2.\mathbf{r}(t) = \langle -t, 6t, 4t \rangle + \langle -14t^2, -12t^2, 8t^2 \rangle.

    Adding the components:

    r(t)=t14t2,6t12t2,4t+8t2.\mathbf{r}(t) = \langle -t - 14t^2, 6t - 12t^2, 4t + 8t^2 \rangle.

  4. Differentiate with respect to tt:

    r(t)=ddtt14t2,6t12t2,4t+8t2.\mathbf{r}'(t) = \frac{d}{dt} \langle -t - 14t^2, 6t - 12t^2, 4t + 8t^2 \rangle.

    Differentiating component-wise:

    r(t)=128t,624t,4+16t.\mathbf{r}'(t) = \langle -1 - 28t, 6 - 24t, 4 + 16t \rangle.

Thus, the derivative is:

r(t)=128t,624t,4+16t,\mathbf{r}'(t) = \langle -1 - 28t, 6 - 24t, 4 + 16t \rangle,

which matches the given solution.


Would you like a further breakdown of any step?

Here are 5 related questions to explore:

  1. What is the geometric meaning of the cross product in vector calculus?
  2. How can we apply this method to find the derivative of a more complex vector function?
  3. Why do we use the product rule for vector-valued functions?
  4. What are some applications of cross products in physics?
  5. Can we use this method to analyze higher-dimensional vector functions?

Tip: When calculating cross products, always use the determinant method to keep track of signs and components systematically.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Cross Product
Differentiation

Formulas

Cross product of two vectors: a × b = (a2b3 - a3b2)i - (a1b3 - a3b1)j + (a1b2 - a2b1)k
Derivative of a vector function r(t): r'(t) = d/dt [r(t)]

Theorems

Product Rule for Differentiation
Determinant Method for Cross Product

Suitable Grade Level

Undergraduate Level (Calculus II or III)