Math Problem Statement

derivate (sqrt(3-x^2))/(3+x)

Solution

To find the derivative of 3x23+x\frac{\sqrt{3 - x^2}}{3 + x}, we'll need to apply both the quotient rule and the chain rule.

Steps:

  1. Let f(x)=3x2f(x) = \sqrt{3 - x^2} and g(x)=3+xg(x) = 3 + x.
  2. Use the quotient rule, which states:

(f(x)g(x))=g(x)f(x)f(x)g(x)(g(x))2\left( \frac{f(x)}{g(x)} \right)' = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}

  1. Find f(x)f'(x) using the chain rule for f(x)=(3x2)1/2f(x) = (3 - x^2)^{1/2}:

f(x)=12(3x2)1/2(2x)=x3x2f'(x) = \frac{1}{2}(3 - x^2)^{-1/2} \cdot (-2x) = \frac{-x}{\sqrt{3 - x^2}}

  1. Find g(x)g'(x):

g(x)=1g'(x) = 1

  1. Apply the quotient rule:

(3x23+x)=(3+x)x3x23x21(3+x)2\left( \frac{\sqrt{3 - x^2}}{3 + x} \right)' = \frac{(3 + x) \cdot \frac{-x}{\sqrt{3 - x^2}} - \sqrt{3 - x^2} \cdot 1}{(3 + x)^2}

  1. Simplify the expression:

=(3+x)x3x23x2(3+x)2= \frac{(3 + x) \cdot \frac{-x}{\sqrt{3 - x^2}} - \sqrt{3 - x^2}}{(3 + x)^2}

  1. Combine terms:

=x(3+x)(3x2)(3+x)23x2= \frac{-x(3 + x) - (3 - x^2)}{(3 + x)^2 \sqrt{3 - x^2}}

=3xx23+x2(3+x)23x2= \frac{-3x - x^2 - 3 + x^2}{(3 + x)^2 \sqrt{3 - x^2}}

=3(x+1)(3+x)23x2= \frac{-3(x + 1)}{(3 + x)^2 \sqrt{3 - x^2}}

Thus, the derivative is:

ddx(3x23+x)=3(x+1)(3+x)23x2\frac{d}{dx} \left( \frac{\sqrt{3 - x^2}}{3 + x} \right) = \frac{-3(x + 1)}{(3 + x)^2 \sqrt{3 - x^2}}


Do you want further details or have any questions?

Here are five related questions to expand your understanding:

  1. How do you apply the product rule and chain rule together in derivatives?
  2. What is the geometrical interpretation of the derivative of a function?
  3. How does the quotient rule compare to the product rule?
  4. Can you find the second derivative of the same function?
  5. How would this derivative behave as xx approaches 3?

Tip: Always simplify expressions before applying derivative rules to make the process easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Quotient Rule
Chain Rule
Derivatives

Formulas

Quotient Rule: (f/g)' = (g*f' - f*g') / g^2
Chain Rule: (f(g(x)))' = f'(g(x)) * g'(x)

Theorems

Quotient Rule
Chain Rule

Suitable Grade Level

Undergraduate (Calculus I or II)