Math Problem Statement

Bestem f'(x) når:

f(x)=7⋅1/x-3x^5-2

Solution

Vi skal bestemme den deriverte av funksjonen:

f(x)=71x3x52f(x) = 7 \cdot \frac{1}{x} - 3x^5 - 2

Trinn for trinn:

  1. Deriver første ledd: 71x=7x17 \cdot \frac{1}{x} = 7x^{-1} Derivering av 7x17x^{-1} gir: ddx(7x1)=7(1)x2=7x2\frac{d}{dx} \left( 7x^{-1} \right) = 7 \cdot (-1) \cdot x^{-2} = -7x^{-2}

  2. **

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Differentiation
Power Rule
Sum Rule

Formulas

f'(x) = d/dx [7 ⋅ 1/x - 3x^5 - 2]
Power Rule: d/dx [x^n] = n ⋅ x^(n-1)
Derivative of a constant = 0

Theorems

Derivative of a sum
Power Rule

Suitable Grade Level

Grades 10-12