Math Problem Statement

If y = sin^-1 [x√(1-x) - √x√(1-x^2)] and 0 < x < 1, then find dy/dx.

Solution

The given problem is:

y=sin1[x1xx1x2],0<x<1y = \sin^{-1} \left[ x \sqrt{1 - x} - \sqrt{x} \sqrt{1 - x^2} \right], \, 0 < x < 1

We are tasked with finding dydx\frac{dy}{dx}.


Step-by-step solution:

  1. Simplify the argument of sin1\sin^{-1}:

    Let: z=x1xx1x2.z = x \sqrt{1 - x} - \sqrt{x} \sqrt{1 - x^2}.

  2. Differentiate yy with respect to xx:

    From the formula for the derivative of sin1(u)\sin^{-1}(u), we know: dydx=11z2dzdx.\frac{dy}{dx} = \frac{1}{\sqrt{1 - z^2}} \cdot \frac{dz}{dx}.

    So, we need to calculate z2z^2 and dzdx\frac{dz}{dx}.


Calculation of z2z^2:

z=x1xx1x2.z = x \sqrt{1 - x} - \sqrt{x} \sqrt{1 - x^2}.

Square zz: z2=(x1xx1x2)2.z^2 = \left(x \sqrt{1 - x} - \sqrt{x} \sqrt{1 - x^2}\right)^2.

Expanding this: z2=(x1x)2+(x1x2)22(x1x)(x1x2).z^2 = \left(x \sqrt{1 - x}\right)^2 + \left(\sqrt{x} \sqrt{1 - x^2}\right)^2 - 2\left(x \sqrt{1 - x}\right)\left(\sqrt{x} \sqrt{1 - x^2}\right).

Compute each term:

  • First term: (x1x)2=x2(1x).\left(x \sqrt{1 - x}\right)^2 = x^2 (1 - x).

  • Second term: (x1x2)2=x(1x2).\left(\sqrt{x} \sqrt{1 - x^2}\right)^2 = x (1 - x^2).

  • Third term: 2(x1x)(x1x2)=2xx(1x)(1x2).2 \left(x \sqrt{1 - x}\right)\left(\sqrt{x} \sqrt{1 - x^2}\right) = 2x \sqrt{x(1 - x)(1 - x^2)}.

Combine the terms: z2=x2(1x)+x(1x2)2xx(1x)(1x2).z^2 = x^2 (1 - x) + x (1 - x^2) - 2x \sqrt{x(1 - x)(1 - x^2)}.

Simplify: z2=x2x3+xx32xx(1x)(1x2).z^2 = x^2 - x^3 + x - x^3 - 2x \sqrt{x(1 - x)(1 - x^2)}. z2=x2x32xx(1x)(1x2).z^2 = x - 2x^3 - 2x \sqrt{x(1 - x)(1 - x^2)}.


Calculation of dzdx\frac{dz}{dx}:

Differentiate z=x1xx1x2z = x \sqrt{1 - x} - \sqrt{x} \sqrt{1 - x^2}:

  1. First term: ddx(x1x)=1x+x121x=1xx21x.\frac{d}{dx}\left(x \sqrt{1 - x}\right) = \sqrt{1 - x} + x \cdot \frac{-1}{2\sqrt{1 - x}} = \sqrt{1 - x} - \frac{x}{2\sqrt{1 - x}}.

  2. Second term: ddx(x1x2)=12x1x2+x2x21x2.\frac{d}{dx}\left(\sqrt{x} \sqrt{1 - x^2}\right) = \frac{1}{2\sqrt{x}} \cdot \sqrt{1 - x^2} + \sqrt{x} \cdot \frac{-2x}{2\sqrt{1 - x^2}}. Simplify: =1x22xx1x2x.= \frac{\sqrt{1 - x^2}}{2\sqrt{x}} - \frac{x}{\sqrt{1 - x^2}} \cdot \sqrt{x}.

Combine both terms for dzdx\frac{dz}{dx}: dzdx=(1xx21x)(1x22xxx1x2).\frac{dz}{dx} = \left(\sqrt{1 - x} - \frac{x}{2\sqrt{1 - x}}\right) - \left(\frac{\sqrt{1 - x^2}}{2\sqrt{x}} - \frac{x \sqrt{x}}{\sqrt{1 - x^2}}\right).


Final Answer:

Substitute dzdx\frac{dz}{dx} and z2z^2 into: dydx=11z2dzdx.\frac{dy}{dx} = \frac{1}{\sqrt{1 - z^2}} \cdot \frac{dz}{dx}.

This completes the derivative calculation.


Would you like further simplification or steps explained in more detail? Let me know!


Related Questions:

  1. What are the properties of sin1(x)\sin^{-1}(x) that were used in this problem?
  2. How does squaring the term help simplify the calculation of dydx\frac{dy}{dx}?
  3. Why do we need to ensure that 0<x<10 < x < 1 for this problem?
  4. How can dzdx\frac{dz}{dx} be simplified further to make calculations easier?
  5. What is the significance of 1z2\sqrt{1 - z^2} in the formula for derivatives of inverse trigonometric functions?

Tip:

For complex derivatives involving square roots, breaking down the problem into smaller parts and simplifying step-by-step is crucial to avoid mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Inverse Trigonometric Functions
Differentiation

Formulas

Derivative of sin^-1(u): dy/dx = 1/√(1-u^2) * du/dx
Product rule: d(uv)/dx = u'v + uv'
Simplification of square root terms in algebra

Theorems

Derivative of Inverse Trigonometric Functions

Suitable Grade Level

Grade 11-12