Math Problem Statement

Let f(x)=(9sinx)/(2sinx+4cosx) .

Then f′(x)=

Solution

To find the derivative f(x)f'(x) of the function

f(x)=9sinx2sinx+4cosx,f(x) = \frac{9\sin x}{2\sin x + 4\cos x},

we use the quotient rule:

ddx(u(x)v(x))=u(x)v(x)u(x)v(x)[v(x)]2.\frac{d}{dx} \left(\frac{u(x)}{v(x)}\right) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}.

Here:

  • u(x)=9sinxu(x) = 9\sin x,
  • v(x)=2sinx+4cosxv(x) = 2\sin x + 4\cos x.

Step 1: Compute u(x)u'(x)

u(x)=9sinx    u(x)=9cosx.u(x) = 9\sin x \implies u'(x) = 9\cos x.

Step 2: Compute v(x)v'(x)

v(x)=2sinx+4cosx    v(x)=2cosx4sinx.v(x) = 2\sin x + 4\cos x \implies v'(x) = 2\cos x - 4\sin x.

Step 3: Apply the quotient rule

Substitute into the quotient rule formula:

f(x)=u(x)v(x)u(x)v(x)[v(x)]2.f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}.

Substitute u(x),u(x),v(x),v(x)u(x), u'(x), v(x), v'(x):

[ f'(x) = \frac{[9\cos x](2\sin x + 4\cos x) - [9\sin x](2\cos x - 4\sin x)}{(2\sin x + 4\cos x)^2}. ]

Step 4: Simplify the numerator

Expand both terms in the numerator:

  1. Expand [9cosx](2sinx+4cosx)[9\cos x](2\sin x + 4\cos x): 9cosx2sinx+9cosx4cosx=18cosxsinx+36cos2x.9\cos x \cdot 2\sin x + 9\cos x \cdot 4\cos x = 18\cos x \sin x + 36\cos^2 x.

  2. Expand [9sinx](2cosx4sinx)[9\sin x](2\cos x - 4\sin x): 9sinx2cosx9sinx4sinx=18sinxcosx36sin2x.9\sin x \cdot 2\cos x - 9\sin x \cdot 4\sin x = 18\sin x \cos x - 36\sin^2 x.

Now subtract these two terms: (18cosxsinx+36cos2x)(18sinxcosx36sin2x).(18\cos x \sin x + 36\cos^2 x) - (18\sin x \cos x - 36\sin^2 x).

Combine like terms: 18cosxsinx18sinxcosx+36cos2x+36sin2x.18\cos x \sin x - 18\sin x \cos x + 36\cos^2 x + 36\sin^2 x.

Simplify further using the Pythagorean identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1: 36(sin2x+cos2x)=36.36(\sin^2 x + \cos^2 x) = 36.

So the numerator simplifies to: 36.36.

Step 5: Write the final derivative

f(x)=36(2sinx+4cosx)2.f'(x) = \frac{36}{(2\sin x + 4\cos x)^2}.


Final Answer:

f(x)=36(2sinx+4cosx)2.f'(x) = \frac{36}{(2\sin x + 4\cos x)^2}.


Would you like a detailed example for applying this derivative? Here are some related questions to practice:

  1. What is the value of f(x)f'(x) at x=π4x = \frac{\pi}{4}?
  2. How does f(x)f(x) behave as x0x \to 0?
  3. How do you interpret f(x)f'(x) in terms of rates of change?
  4. What are the critical points of f(x)f(x)?
  5. How does the quotient rule differ from the product rule?

Tip: Always check for simplifications after using the quotient rule to avoid unnecessary complexity!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Derivatives
Quotient Rule
Trigonometry

Formulas

Quotient rule: d/dx [u(x)/v(x)] = [u'(x)v(x) - u(x)v'(x)] / [v(x)]^2
Trigonometric derivatives: d/dx(sinx) = cosx, d/dx(cosx) = -sinx
Pythagorean identity: sin^2(x) + cos^2(x) = 1

Theorems

Quotient Rule
Pythagorean Identity

Suitable Grade Level

Undergraduate or Advanced High School (Grades 11-12)