Math Problem Statement

Verify d/dx [coth x] = -csch^2 x

Solution

We want to verify if the derivative of coth(x)\coth(x) is equal to \csch2(x)-\csch^2(x).

The hyperbolic cotangent function is defined as:

coth(x)=cosh(x)sinh(x)\coth(x) = \frac{\cosh(x)}{\sinh(x)}

To differentiate coth(x)\coth(x), we use the quotient rule, which is given by:

ddx(f(x)g(x))=f(x)g(x)f(x)g(x)[g(x)]2\frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}

For coth(x)=cosh(x)sinh(x)\coth(x) = \frac{\cosh(x)}{\sinh(x)}, let:

  • f(x)=cosh(x)f(x) = \cosh(x)
  • g(x)=sinh(x)g(x) = \sinh(x)

We know that:

ddxcosh(x)=sinh(x)\frac{d}{dx} \cosh(x) = \sinh(x) ddxsinh(x)=cosh(x)\frac{d}{dx} \sinh(x) = \cosh(x)

Now applying the quotient rule:

ddx(coth(x))=sinh(x)sinh(x)cosh(x)cosh(x)[sinh(x)]2\frac{d}{dx} \left( \coth(x) \right) = \frac{\sinh(x) \cdot \sinh(x) - \cosh(x) \cdot \cosh(x)}{[\sinh(x)]^2}

This simplifies to:

ddx(coth(x))=sinh2(x)cosh2(x)[sinh(x)]2\frac{d}{dx} \left( \coth(x) \right) = \frac{\sinh^2(x) - \cosh^2(x)}{[\sinh(x)]^2}

Using the hyperbolic identity cosh2(x)sinh2(x)=1\cosh^2(x) - \sinh^2(x) = 1, this becomes:

ddx(coth(x))=1sinh2(x)\frac{d}{dx} \left( \coth(x) \right) = -\frac{1}{\sinh^2(x)}

Since \csch(x)=1sinh(x)\csch(x) = \frac{1}{\sinh(x)}, we can rewrite this as:

ddx(coth(x))=\csch2(x)\frac{d}{dx} \left( \coth(x) \right) = -\csch^2(x)

Thus, we have verified that:

ddx(coth(x))=\csch2(x)\frac{d}{dx} \left( \coth(x) \right) = -\csch^2(x)

Do you want more details or have any questions?

Here are 5 related questions:

  1. How do you differentiate other hyperbolic functions like cosh(x)\cosh(x) and sinh(x)\sinh(x)?
  2. What is the relationship between hyperbolic and trigonometric functions?
  3. Can you show how the chain rule applies to hyperbolic functions?
  4. How do you integrate \csch2(x)\csch^2(x)?
  5. What are the applications of hyperbolic functions in calculus?

Tip: Remember that hyperbolic identities

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Hyperbolic Functions
Differentiation

Formulas

Quotient rule: d/dx [f(x)/g(x)] = [f'(x)g(x) - f(x)g'(x)]/[g(x)]^2
coth(x) = cosh(x)/sinh(x)
d/dx [cosh(x)] = sinh(x)
d/dx [sinh(x)] = cosh(x)
Hyperbolic identity: cosh^2(x) - sinh^2(x) = 1
csch(x) = 1/sinh(x)

Theorems

Quotient Rule
Hyperbolic Function Derivatives
Hyperbolic Identities

Suitable Grade Level

Undergraduate Calculus