Math Problem Statement
If y equals open parentheses cos space x close parentheses to the power of x squared end exponent comma spacethen fraction numerator d y over denominator d x end fraction equals
a. open parentheses cos space x close parentheses to the power of x squared end exponent open parentheses negative 2 x space tan space x space plus x squared space ln left parenthesis cos x right parenthesis close parentheses
b. x squared space open parentheses cos space x close parentheses to the power of x squared minus 1 end exponent open parentheses negative sin space x close parentheses left parenthesis 2 x right parenthesis
c. negative x squared space open parentheses cos space x close parentheses to the power of x squared end exponent open parentheses tan space x space minus ln left parenthesis cos space x right parenthesis close parentheses
d. negative x space open parentheses cos space x close parentheses to the power of x squared end exponent open parentheses x space tan space x space minus 2 space ln left parenthesis cos space x right parenthesis close parentheses
e. negative x space open parentheses cos space x close parentheses to the power of x squared end exponent open parentheses x space tan space x space plus 2 space ln left parenthesis cos space x right parenthesis close parentheses
Solution
Given the function , we need to find its derivative .
To solve this, we will use logarithmic differentiation. Let's start by taking the natural logarithm of both sides:
Using the logarithm power rule , we get:
Next, differentiate both sides with respect to :
On the left side, using the chain rule:
On the right side, using the product rule , where and :
To differentiate :
Therefore:
Combining everything:
Multiplying both sides by :
Recall that :
Rewriting the expression:
Comparing with the given options, the correct answer is:
a. ((\cos x)^{x^2} (-
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Logarithmic Differentiation
Chain Rule
Product Rule
Natural Logarithm
Exponential Function
Formulas
Logarithm power rule
Chain rule for differentiation
Product rule for differentiation
Theorems
-
Suitable Grade Level
Advanced High School