Math Problem Statement

Montrer que si f est une fonction paire, alors ∫[-a, a] f(x) dx = 2 ∫[0, a] f(x) dx. Montrer que si f est une fonction impaire, alors ∫[-a, a] f(x) dx = 0.

Solution

The problem is asking to demonstrate two properties of definite integrals related to even and odd functions.

Solution

Part (a)

Statement: Show that if ff is an even function, then aaf(x)dx=20af(x)dx.\int_{-a}^{a} f(x) \, dx = 2 \int_0^{a} f(x) \, dx.

  1. Definition of an even function: A function f(x)f(x) is even if f(x)=f(x)f(-x) = f(x) for all xx in its domain.

  2. Set up the integral: aaf(x)dx=a0f(x)dx+0af(x)dx.\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx.

  3. Use the property of even functions: Since f(x)f(x) is even, f(x)=f(x)f(x) = f(-x). In the interval [a,0][-a, 0], let u=xu = -x (then du=dxdu = -dx). When x=ax = -a, u=au = a, and when x=0x = 0, u=0u = 0. Thus, a0f(x)dx=a0f(u)(du)=0af(u)du=0af(x)dx.\int_{-a}^{0} f(x) \, dx = \int_{a}^{0} f(-u) \, (-du) = \int_{0}^{a} f(u) \, du = \int_{0}^{a} f(x) \, dx.

  4. Combine integrals: aaf(x)dx=0af(x)dx+0af(x)dx=20af(x)dx.\int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx. Thus, the result is proven.

Part (b)

Statement: Show that if ff is an odd function, then aaf(x)dx=0.\int_{-a}^{a} f(x) \, dx = 0.

  1. Definition of an odd function: A function f(x)f(x) is odd if f(x)=f(x)f(-x) = -f(x) for all xx in its domain.

  2. Set up the integral: aaf(x)dx=a0f(x)dx+0af(x)dx.\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx.

  3. Use the property of odd functions: Since f(x)f(x) is odd, f(x)=f(x)f(-x) = -f(x). In the interval [a,0][-a, 0], let u=xu = -x (then du=dxdu = -dx). When x=ax = -a, u=au = a, and when x=0x = 0, u=0u = 0. Thus, a0f(x)dx=a0f(u)(du)=0af(u)du=0af(x)dx.\int_{-a}^{0} f(x) \, dx = \int_{a}^{0} f(-u) \, (-du) = -\int_{0}^{a} f(u) \, du = -\int_{0}^{a} f(x) \, dx.

  4. Combine integrals: aaf(x)dx=0af(x)dx0af(x)dx=0.\int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(x) \, dx - \int_{0}^{a} f(x) \, dx = 0. Thus, the result is proven.

Would you like more details on any of these steps, or do you have further questions?


Here are 5 related questions to expand your understanding:

  1. What are some examples of even functions and odd functions?
  2. How would these properties change if f(x)f(x) were neither even nor odd?
  3. Why is the integral of an odd function over a symmetric interval always zero?
  4. Can you apply these properties to solve definite integrals more efficiently?
  5. How do these properties apply in Fourier analysis for decomposing functions?

Tip: When calculating definite integrals over symmetric intervals, check if the function is even or odd. This can simplify the calculation significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integrals
Even and Odd Functions
Symmetry in Integrals

Formulas

For an even function f: ∫[-a, a] f(x) dx = 2 ∫[0, a] f(x) dx
For an odd function f: ∫[-a, a] f(x) dx = 0

Theorems

Properties of definite integrals for even and odd functions

Suitable Grade Level

Grades 11-12 or introductory university level