To evaluate the definite integral
∫−35(4x2−5x+6)dx,
we follow these steps:
Step 1: Find the indefinite integral
First, compute the indefinite integral of the function 4x2−5x+6:
∫(4x2−5x+6)dx=34x3−25x2+6x+C
Step 2: Evaluate the definite integral
Now, evaluate the definite integral by substituting the bounds of integration:
∫−35(4x2−5x+6)dx=[34x3−25x2+6x]−35.
Substitute x=5:
34(5)3−25(5)2+6(5)=34(125)−25(25)+30.
Simplify each term:
34(125)=3500,25(25)=2125,6(5)=30.
So, at x=5:
3500−2125+30.
Next, substitute x=−3:
34(−3)3−25(−3)2+6(−3)=34(−27)−25(9)+(−18).
Simplify each term:
34(−27)=−36,25(9)=245,6(−3)=−18.
So, at x=−3:
−36−245−18.
Step 3: Combine results
Now subtract the results at x=−3 from the results at x=5:
- At x=5: 3500−2125+30
- At x=−3: −36−245−18
Simplify:
∫−35(4x2−5x+6)dx=(3500−2125+30)−(−36−245−18).
Expand and combine:
=3500−2125+30+36+245+18.
Group fractions and constants:
=3500+(−2125+245)+(30+36+18).
Simplify each group:
- Constants: 30+36+18=84,
- Fractions: −2125+245=−280=−40.
Combine everything:
∫−35(4x2−5x+6)dx=3500−40+84.
Simplify:
∫−35(4x2−5x+6)dx=3500+44.
Express as a single fraction:
∫−35(4x2−5x+6)dx=3500+3132=3632.
Final Answer:
∫−35(4x2−5x+6)dx=3632.
Would you like me to explain any step in more detail or provide further examples?
Related Questions:
- How do definite integrals represent the area under the curve?
- What is the role of the Fundamental Theorem of Calculus in evaluating integrals?
- How do you handle improper integrals where the bounds are infinite?
- Can you explain the geometric interpretation of negative results in definite integrals?
- How can definite integrals be used in physics or engineering applications?
Tip:
Always simplify terms systematically when evaluating definite integrals to avoid errors in arithmetic!