Math Problem Statement

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msubsup> <mfrac> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mfrac> <mi>d</mi> <mi>x</mi> </math>

Solution

You have provided the following integral:

1ex2+1x3dx\int_1^e \frac{x^2 + 1}{x^3} \, dx

To solve this, we will first simplify the integrand:

x2+1x3=x2x3+1x3=1x+1x3\frac{x^2 + 1}{x^3} = \frac{x^2}{x^3} + \frac{1}{x^3} = \frac{1}{x} + \frac{1}{x^3}

So, the integral becomes:

1e(1x+1x3)dx\int_1^e \left( \frac{1}{x} + \frac{1}{x^3} \right) \, dx

Now, let's integrate each term separately:

  1. The integral of 1x\frac{1}{x} is lnx\ln|x|.
  2. The integral of 1x3\frac{1}{x^3} is 12x2-\frac{1}{2x^2}.

Thus, the integral becomes:

1e(1x+1x3)dx=[lnx12x2]1e\int_1^e \left( \frac{1}{x} + \frac{1}{x^3} \right) \, dx = \left[ \ln|x| - \frac{1}{2x^2} \right]_1^e

Evaluating at the limits:

  • When x=ex = e:

lne12e2=ln(e)12e2=112e2\ln|e| - \frac{1}{2e^2} = \ln(e) - \frac{1}{2e^2} = 1 - \frac{1}{2e^2}

  • When x=1x = 1:

ln112(1)2=012=12\ln|1| - \frac{1}{2(1)^2} = 0 - \frac{1}{2} = -\frac{1}{2}

Now, subtract the lower limit evaluation from the upper limit:

(112e2)(12)=112e2+12\left( 1 - \frac{1}{2e^2} \right) - \left( -\frac{1}{2} \right) = 1 - \frac{1}{2e^2} + \frac{1}{2}

Simplifying:

1+1212e2=3212e21 + \frac{1}{2} - \frac{1}{2e^2} = \frac{3}{2} - \frac{1}{2e^2}

Thus, the value of the integral is:

3212e2\boxed{\frac{3}{2} - \frac{1}{2e^2}}

Would you like further clarification or a breakdown of any specific steps? Here are some related questions you could explore:

  1. How do we integrate rational functions like 1x3\frac{1}{x^3}?
  2. What are the common techniques for handling logarithmic integrals?
  3. How does the substitution method apply to this integral?
  4. What are the properties of the natural logarithm function in integrals?
  5. How do we evaluate definite integrals involving exponential functions like exe^x?

Tip: When you encounter fractions involving powers of xx, it's often helpful to break them into simpler fractions, like x2x3=1x\frac{x^2}{x^3} = \frac{1}{x}, before integrating.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Rational Functions
Logarithmic Functions

Formulas

Integral of 1/x = ln|x|
Integral of 1/x^n = -1/(n-1)x^(n-1) for n ≠ 1

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12