Math Problem Statement

Реши

Вычислите интеграл \( \int_{-1}^0 \frac{x \, dx}{\sqrt{1 - x^2}} \) или установите его расходимость.

Solution

The integral provided in the image is:

10xdx1x2\int_{-1}^0 \frac{x \, dx}{\sqrt{1 - x^2}}

Let's solve it step-by-step:


Step 1: Analyze the Integral

The denominator 1x2\sqrt{1 - x^2} resembles the derivative of arcsin(x)\arcsin(x), but because the numerator has xx, substitution will simplify this integral.


Step 2: Substitution

Let u=1x2u = 1 - x^2, so: du=2xdxorxdx=12du.du = -2x \, dx \quad \text{or} \quad x \, dx = -\frac{1}{2} du.

When x=1x = -1: u=1(1)2=0.u = 1 - (-1)^2 = 0.

When x=0x = 0: u=102=1.u = 1 - 0^2 = 1.

The limits of integration change from x[1,0]x \in [-1, 0] to u[0,1]u \in [0, 1].


Step 3: Rewrite the Integral

Substituting these into the integral: 10xdx1x2=0112duu=1201u1/2du.\int_{-1}^0 \frac{x \, dx}{\sqrt{1 - x^2}} = \int_{0}^1 \frac{-\frac{1}{2} \, du}{\sqrt{u}} = -\frac{1}{2} \int_{0}^1 u^{-1/2} \, du.


Step 4: Solve the Integral

The integral of u1/2u^{-1/2} is: u1/2du=2u1/2.\int u^{-1/2} \, du = 2u^{1/2}.

Thus: 12u1/2du=122u1/2=u1/2.-\frac{1}{2} \int u^{-1/2} \, du = -\frac{1}{2} \cdot 2u^{1/2} = -u^{1/2}.


Step 5: Apply Limits of Integration

Now substitute the limits u=0u = 0 and u=1u = 1: [u1/2]01=11/2+01/2=1+0=1.\left[ -u^{1/2} \right]_0^1 = -1^{1/2} + 0^{1/2} = -1 + 0 = -1.


Final Answer:

The value of the integral is: 1.\boxed{-1}.

Would you like a deeper explanation or have any questions? Here are some related questions to explore:

  1. What happens if the limits of integration are swapped?
  2. Why is substitution helpful for solving this integral?
  3. How would the integral change if the numerator was x2x^2?
  4. What if the integrand involved 1x2\sqrt{1 - x^2} in the numerator?
  5. How does this integral relate to trigonometric functions like arcsin(x)\arcsin(x)?

Tip: Always check if substitution can simplify an integral when you notice a composite function.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integral
Substitution Method
Integral Calculus

Formulas

\( \int u^n \, du = \frac{u^{n+1}}{n+1} + C \) for \( n \neq -1 \)
Substitution: \( u = 1 - x^2 \), \( x dx = -\frac{1}{2} du \)

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Calculus