Math Problem Statement

show each step and show it like a IB would want it

Show each step of solving the definite integral from 1/3 to 1/2 of dx over (1-x) times the square root of (1-x^2).

Solution

The given integral is:

1312dx(1x)1x2\int_{\frac{1}{3}}^{\frac{1}{2}} \frac{dx}{(1 - x)\sqrt{1 - x^2}}

Let's solve this step-by-step:

Step 1: Identify the structure of the integrand

We have the expression:

1(1x)1x2\frac{1}{(1 - x)\sqrt{1 - x^2}}

This suggests a potential substitution involving trigonometric identities due to the square root of 1x21 - x^2.

Step 2: Trigonometric substitution

Since we recognize 1x2\sqrt{1 - x^2}, the substitution x=sinθx = \sin \theta might be useful. Let’s try it:

  1. Set x=sinθx = \sin \theta, so dx=cosθdθdx = \cos \theta \, d\theta.
  2. Then 1x2=1sin2θ=cosθ\sqrt{1 - x^2} = \sqrt{1 - \sin^2 \theta} = \cos \theta.

Thus, the integral becomes:

cosθdθ(1sinθ)cosθ\int \frac{\cos \theta \, d\theta}{(1 - \sin \theta)\cos \theta}

Simplifying:

dθ1sinθ\int \frac{d\theta}{1 - \sin \theta}

Step 3: Use of identity for simplification

We use the identity:

1sinθ=(1sinθ)(1+sinθ)1+sinθ=1sin2θ1+sinθ=cos2θ1+sinθ1 - \sin \theta = \frac{(1 - \sin \theta)(1 + \sin \theta)}{1 + \sin \theta} = \frac{1 - \sin^2 \theta}{1 + \sin \theta} = \frac{\cos^2 \theta}{1 + \sin \theta}

Thus, the integral becomes:

dθcos2θ1+sinθ=1+sinθcos2θdθ\int \frac{d\theta}{\frac{\cos^2 \theta}{1 + \sin \theta}} = \int \frac{1 + \sin \theta}{\cos^2 \theta} d\theta

Now split this into two integrals:

1cos2θdθ+sinθcos2θdθ\int \frac{1}{\cos^2 \theta} d\theta + \int \frac{\sin \theta}{\cos^2 \theta} d\theta

The first integral is:

sec2θdθ=tanθ\int \sec^2 \theta \, d\theta = \tan \theta

The second integral is:

sinθcos2θdθ=secθ\int \frac{\sin \theta}{\cos^2 \theta} d\theta = \sec \theta

Step 4: Combine results

So, the solution for the integral becomes:

tanθ+secθ\tan \theta + \sec \theta

Step 5: Back-substitute x=sinθx = \sin \theta

Recall that x=sinθx = \sin \theta, so:

  • tanθ=x1x2\tan \theta = \frac{x}{\sqrt{1 - x^2}}
  • secθ=11x2\sec \theta = \frac{1}{\sqrt{1 - x^2}}

Thus, the integral becomes:

x1x2+11x2=1+x1x2\frac{x}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 - x^2}} = \frac{1 + x}{\sqrt{1 - x^2}}

Step 6: Evaluate the definite integral

We now evaluate the definite integral from x=13x = \frac{1}{3} to x=12x = \frac{1}{2}.

First, plug in x=12x = \frac{1}{2}:

1+121(12)2=32114=3232=33=3\frac{1 + \frac{1}{2}}{\sqrt{1 - \left( \frac{1}{2} \right)^2}} = \frac{\frac{3}{2}}{\sqrt{1 - \frac{1}{4}}} = \frac{\frac{3}{2}}{\frac{\sqrt{3}}{2}} = \frac{3}{\sqrt{3}} = \sqrt{3}

Now, plug in x=13x = \frac{1}{3}:

1+131(13)2=43119=4383=48=422=22=2\frac{1 + \frac{1}{3}}{\sqrt{1 - \left( \frac{1}{3} \right)^2}} = \frac{\frac{4}{3}}{\sqrt{1 - \frac{1}{9}}} = \frac{\frac{4}{3}}{\frac{\sqrt{8}}{3}} = \frac{4}{\sqrt{8}} = \frac{4}{2\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}

Step 7: Final result

The final value of the definite integral is:

32\sqrt{3} - \sqrt{2}

Therefore, the value of the given integral is 32\sqrt{3} - \sqrt{2}.


Would you like further details on any step?

Here are 5 related questions to consider:

  1. What other substitution methods can simplify integrals with square roots?
  2. How does the identity for 1sinθ1 - \sin \theta help in integral evaluation?
  3. What are the common scenarios where trigonometric substitution is useful?
  4. How do definite integrals with trigonometric substitution work?
  5. What are the best practices for checking definite integral results?

Tip: Trigonometric substitution is very effective when dealing with expressions involving square roots like 1x2\sqrt{1 - x^2}, so identifying these patterns early simplifies integration.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Substitution

Formulas

Trigonometric Substitution: x = sin(θ), dx = cos(θ) dθ
Trigonometric Identity: 1 - sin^2(θ) = cos^2(θ)

Theorems

Definite Integral Theorem
Trigonometric Substitution

Suitable Grade Level

College Level (Calculus)